| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
fzssp1 |
|
| 3 |
|
nn0cn |
|
| 4 |
3
|
adantl |
|
| 5 |
|
ax-1cn |
|
| 6 |
|
npcan |
|
| 7 |
4 5 6
|
sylancl |
|
| 8 |
7
|
oveq2d |
|
| 9 |
2 8
|
sseqtrid |
|
| 10 |
9
|
sselda |
|
| 11 |
|
bccl2 |
|
| 12 |
11
|
adantl |
|
| 13 |
12
|
nncnd |
|
| 14 |
|
simpl |
|
| 15 |
|
elfznn0 |
|
| 16 |
|
expcl |
|
| 17 |
14 15 16
|
syl2an |
|
| 18 |
13 17
|
mulcld |
|
| 19 |
10 18
|
syldan |
|
| 20 |
1 19
|
fsumcl |
|
| 21 |
|
expcl |
|
| 22 |
|
addcom |
|
| 23 |
14 5 22
|
sylancl |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
binom1p |
|
| 26 |
|
simpr |
|
| 27 |
|
nn0uz |
|
| 28 |
26 27
|
eleqtrdi |
|
| 29 |
|
oveq2 |
|
| 30 |
|
oveq2 |
|
| 31 |
29 30
|
oveq12d |
|
| 32 |
28 18 31
|
fsumm1 |
|
| 33 |
|
bcnn |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
oveq1d |
|
| 36 |
21
|
mullidd |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
32 38
|
eqtrd |
|
| 40 |
24 25 39
|
3eqtrd |
|
| 41 |
20 21 40
|
mvrraddd |
|