Metamath Proof Explorer


Theorem binomfallfac

Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018)

Ref Expression
Assertion binomfallfac ABN0A+BN_=k=0N(Nk)ANk_Bk_

Proof

Step Hyp Ref Expression
1 oveq2 m=0A+Bm_=A+B0_
2 oveq2 m=00m=00
3 fz0sn 00=0
4 2 3 eqtrdi m=00m=0
5 oveq1 m=0(mk)=(0k)
6 oveq1 m=0mk=0k
7 6 oveq2d m=0Amk_=A0k_
8 7 oveq1d m=0Amk_Bk_=A0k_Bk_
9 5 8 oveq12d m=0(mk)Amk_Bk_=(0k)A0k_Bk_
10 9 adantr m=0k0m(mk)Amk_Bk_=(0k)A0k_Bk_
11 4 10 sumeq12dv m=0k=0m(mk)Amk_Bk_=k0(0k)A0k_Bk_
12 1 11 eqeq12d m=0A+Bm_=k=0m(mk)Amk_Bk_A+B0_=k0(0k)A0k_Bk_
13 12 imbi2d m=0ABA+Bm_=k=0m(mk)Amk_Bk_ABA+B0_=k0(0k)A0k_Bk_
14 oveq2 m=nA+Bm_=A+Bn_
15 oveq2 m=n0m=0n
16 oveq1 m=n(mk)=(nk)
17 oveq1 m=nmk=nk
18 17 oveq2d m=nAmk_=Ank_
19 18 oveq1d m=nAmk_Bk_=Ank_Bk_
20 16 19 oveq12d m=n(mk)Amk_Bk_=(nk)Ank_Bk_
21 20 adantr m=nk0m(mk)Amk_Bk_=(nk)Ank_Bk_
22 15 21 sumeq12dv m=nk=0m(mk)Amk_Bk_=k=0n(nk)Ank_Bk_
23 14 22 eqeq12d m=nA+Bm_=k=0m(mk)Amk_Bk_A+Bn_=k=0n(nk)Ank_Bk_
24 23 imbi2d m=nABA+Bm_=k=0m(mk)Amk_Bk_ABA+Bn_=k=0n(nk)Ank_Bk_
25 oveq2 m=n+1A+Bm_=A+Bn+1_
26 oveq2 m=n+10m=0n+1
27 oveq1 m=n+1(mk)=(n+1k)
28 oveq1 m=n+1mk=n+1-k
29 28 oveq2d m=n+1Amk_=An+1-k_
30 29 oveq1d m=n+1Amk_Bk_=An+1-k_Bk_
31 27 30 oveq12d m=n+1(mk)Amk_Bk_=(n+1k)An+1-k_Bk_
32 31 adantr m=n+1k0m(mk)Amk_Bk_=(n+1k)An+1-k_Bk_
33 26 32 sumeq12dv m=n+1k=0m(mk)Amk_Bk_=k=0n+1(n+1k)An+1-k_Bk_
34 25 33 eqeq12d m=n+1A+Bm_=k=0m(mk)Amk_Bk_A+Bn+1_=k=0n+1(n+1k)An+1-k_Bk_
35 34 imbi2d m=n+1ABA+Bm_=k=0m(mk)Amk_Bk_ABA+Bn+1_=k=0n+1(n+1k)An+1-k_Bk_
36 oveq2 m=NA+Bm_=A+BN_
37 oveq2 m=N0m=0N
38 oveq1 m=N(mk)=(Nk)
39 oveq1 m=Nmk=Nk
40 39 oveq2d m=NAmk_=ANk_
41 40 oveq1d m=NAmk_Bk_=ANk_Bk_
42 38 41 oveq12d m=N(mk)Amk_Bk_=(Nk)ANk_Bk_
43 42 adantr m=Nk0m(mk)Amk_Bk_=(Nk)ANk_Bk_
44 37 43 sumeq12dv m=Nk=0m(mk)Amk_Bk_=k=0N(Nk)ANk_Bk_
45 36 44 eqeq12d m=NA+Bm_=k=0m(mk)Amk_Bk_A+BN_=k=0N(Nk)ANk_Bk_
46 45 imbi2d m=NABA+Bm_=k=0m(mk)Amk_Bk_ABA+BN_=k=0N(Nk)ANk_Bk_
47 fallfac0 AA0_=1
48 fallfac0 BB0_=1
49 47 48 oveqan12d ABA0_B0_=11
50 1t1e1 11=1
51 49 50 eqtrdi ABA0_B0_=1
52 51 oveq2d AB1A0_B0_=11
53 52 50 eqtrdi AB1A0_B0_=1
54 0cn 0
55 ax-1cn 1
56 53 55 eqeltrdi AB1A0_B0_
57 oveq2 k=0(0k)=(00)
58 0nn0 00
59 bcnn 00(00)=1
60 58 59 ax-mp (00)=1
61 57 60 eqtrdi k=0(0k)=1
62 oveq2 k=00k=00
63 0m0e0 00=0
64 62 63 eqtrdi k=00k=0
65 64 oveq2d k=0A0k_=A0_
66 oveq2 k=0Bk_=B0_
67 65 66 oveq12d k=0A0k_Bk_=A0_B0_
68 61 67 oveq12d k=0(0k)A0k_Bk_=1A0_B0_
69 68 sumsn 01A0_B0_k0(0k)A0k_Bk_=1A0_B0_
70 54 56 69 sylancr ABk0(0k)A0k_Bk_=1A0_B0_
71 addcl ABA+B
72 fallfac0 A+BA+B0_=1
73 71 72 syl ABA+B0_=1
74 53 70 73 3eqtr4rd ABA+B0_=k0(0k)A0k_Bk_
75 simprl n0ABA
76 simprr n0ABB
77 simpl n0ABn0
78 id A+Bn_=k=0n(nk)Ank_Bk_A+Bn_=k=0n(nk)Ank_Bk_
79 75 76 77 78 binomfallfaclem2 n0ABA+Bn_=k=0n(nk)Ank_Bk_A+Bn+1_=k=0n+1(n+1k)An+1-k_Bk_
80 79 exp31 n0ABA+Bn_=k=0n(nk)Ank_Bk_A+Bn+1_=k=0n+1(n+1k)An+1-k_Bk_
81 80 a2d n0ABA+Bn_=k=0n(nk)Ank_Bk_ABA+Bn+1_=k=0n+1(n+1k)An+1-k_Bk_
82 13 24 35 46 74 81 nn0ind N0ABA+BN_=k=0N(Nk)ANk_Bk_
83 82 com12 ABN0A+BN_=k=0N(Nk)ANk_Bk_
84 83 3impia ABN0A+BN_=k=0N(Nk)ANk_Bk_