Description: There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | bitsinv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 | |
|
2 | 2nn0 | |
|
3 | 2 | a1i | |
4 | elfpw | |
|
5 | 4 | simplbi | |
6 | 5 | sselda | |
7 | 3 6 | nn0expcld | |
8 | 1 7 | fsumnn0cl | |
9 | bitsinv1 | |
|
10 | 8 9 | syl | |
11 | bitsss | |
|
12 | 11 | a1i | |
13 | bitsfi | |
|
14 | 8 13 | syl | |
15 | elfpw | |
|
16 | 12 14 15 | sylanbrc | |
17 | oveq2 | |
|
18 | 17 | cbvsumv | |
19 | sumeq1 | |
|
20 | 18 19 | eqtrid | |
21 | eqid | |
|
22 | sumex | |
|
23 | 20 21 22 | fvmpt | |
24 | 16 23 | syl | |
25 | sumeq1 | |
|
26 | sumex | |
|
27 | 25 21 26 | fvmpt | |
28 | 10 24 27 | 3eqtr4d | |
29 | 21 | ackbijnn | |
30 | f1of1 | |
|
31 | 29 30 | mp1i | |
32 | id | |
|
33 | f1fveq | |
|
34 | 31 16 32 33 | syl12anc | |
35 | 28 34 | mpbid | |