| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elinel2 |  | 
						
							| 2 |  | 2nn0 |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 |  | elfpw |  | 
						
							| 5 | 4 | simplbi |  | 
						
							| 6 | 5 | sselda |  | 
						
							| 7 | 3 6 | nn0expcld |  | 
						
							| 8 | 1 7 | fsumnn0cl |  | 
						
							| 9 |  | bitsinv1 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | bitsss |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 |  | bitsfi |  | 
						
							| 14 | 8 13 | syl |  | 
						
							| 15 |  | elfpw |  | 
						
							| 16 | 12 14 15 | sylanbrc |  | 
						
							| 17 |  | oveq2 |  | 
						
							| 18 | 17 | cbvsumv |  | 
						
							| 19 |  | sumeq1 |  | 
						
							| 20 | 18 19 | eqtrid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | sumex |  | 
						
							| 23 | 20 21 22 | fvmpt |  | 
						
							| 24 | 16 23 | syl |  | 
						
							| 25 |  | sumeq1 |  | 
						
							| 26 |  | sumex |  | 
						
							| 27 | 25 21 26 | fvmpt |  | 
						
							| 28 | 10 24 27 | 3eqtr4d |  | 
						
							| 29 | 21 | ackbijnn |  | 
						
							| 30 |  | f1of1 |  | 
						
							| 31 | 29 30 | mp1i |  | 
						
							| 32 |  | id |  | 
						
							| 33 |  | f1fveq |  | 
						
							| 34 | 31 16 32 33 | syl12anc |  | 
						
							| 35 | 28 34 | mpbid |  |