| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-bary1.a |
|
| 2 |
|
bj-bary1.b |
|
| 3 |
|
bj-bary1.x |
|
| 4 |
|
bj-bary1.neq |
|
| 5 |
|
bj-bary1.s |
|
| 6 |
|
bj-bary1.t |
|
| 7 |
5 1
|
mulcld |
|
| 8 |
6 2
|
mulcld |
|
| 9 |
7 8
|
addcomd |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
biimpd |
|
| 12 |
5 6
|
addcomd |
|
| 13 |
12
|
eqeq1d |
|
| 14 |
13
|
biimpd |
|
| 15 |
4
|
necomd |
|
| 16 |
2 1 3 15 6 5
|
bj-bary1lem1 |
|
| 17 |
11 14 16
|
syl2and |
|
| 18 |
3 2 1 2 4
|
div2subd |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
17 19
|
sylibd |
|
| 21 |
1 2 3 4 5 6
|
bj-bary1lem1 |
|
| 22 |
20 21
|
jcad |
|
| 23 |
1 2 3 4
|
bj-bary1lem |
|
| 24 |
|
oveq1 |
|
| 25 |
|
oveq1 |
|
| 26 |
24 25
|
oveqan12d |
|
| 27 |
26
|
a1i |
|
| 28 |
|
eqtr3 |
|
| 29 |
23 27 28
|
syl6an |
|
| 30 |
|
oveq12 |
|
| 31 |
2 3
|
subcld |
|
| 32 |
3 1
|
subcld |
|
| 33 |
2 1
|
subcld |
|
| 34 |
2 1 15
|
subne0d |
|
| 35 |
31 32 33 34
|
divdird |
|
| 36 |
2 3 1
|
npncand |
|
| 37 |
33 34 36
|
diveq1bd |
|
| 38 |
35 37
|
eqtr3d |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
30 39
|
imbitrid |
|
| 41 |
29 40
|
jcad |
|
| 42 |
22 41
|
impbid |
|