Description: Lemma for bj-bary1 : expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-bary1.a | |
|
bj-bary1.b | |
||
bj-bary1.x | |
||
bj-bary1.neq | |
||
Assertion | bj-bary1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bary1.a | |
|
2 | bj-bary1.b | |
|
3 | bj-bary1.x | |
|
4 | bj-bary1.neq | |
|
5 | 2 1 | mulcld | |
6 | 3 1 | mulcld | |
7 | 5 6 | subcld | |
8 | 3 2 | mulcld | |
9 | 1 2 | mulcld | |
10 | 7 8 9 | addsub12d | |
11 | 5 6 9 | sub32d | |
12 | 2 1 | bj-subcom | |
13 | 12 | oveq1d | |
14 | 11 13 | eqtrd | |
15 | 14 | oveq2d | |
16 | 10 15 | eqtrd | |
17 | 0cnd | |
|
18 | 8 17 6 | addsubassd | |
19 | 8 | addridd | |
20 | 19 | oveq1d | |
21 | 16 18 20 | 3eqtr2d | |
22 | 2 3 1 | subdird | |
23 | 3 1 2 | subdird | |
24 | 22 23 | oveq12d | |
25 | 3 2 1 | subdid | |
26 | 21 24 25 | 3eqtr4rd | |
27 | 26 | oveq1d | |
28 | 2 3 | subcld | |
29 | 28 1 | mulcld | |
30 | 3 1 | subcld | |
31 | 30 2 | mulcld | |
32 | 2 1 | subcld | |
33 | 4 | necomd | |
34 | 2 1 33 | subne0d | |
35 | 29 31 32 34 | divdird | |
36 | 27 35 | eqtrd | |
37 | 3 32 34 | divcan4d | |
38 | 28 1 32 34 | div23d | |
39 | 30 2 32 34 | div23d | |
40 | 38 39 | oveq12d | |
41 | 36 37 40 | 3eqtr3d | |