Metamath Proof Explorer


Theorem bj-bary1lem

Description: Lemma for bj-bary1 : expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-bary1.a φA
bj-bary1.b φB
bj-bary1.x φX
bj-bary1.neq φAB
Assertion bj-bary1lem φX=BXBAA+XABAB

Proof

Step Hyp Ref Expression
1 bj-bary1.a φA
2 bj-bary1.b φB
3 bj-bary1.x φX
4 bj-bary1.neq φAB
5 2 1 mulcld φBA
6 3 1 mulcld φXA
7 5 6 subcld φBAXA
8 3 2 mulcld φXB
9 1 2 mulcld φAB
10 7 8 9 addsub12d φBAXA+XB-AB=XB+BAXA-AB
11 5 6 9 sub32d φBA-XA-AB=BA-AB-XA
12 2 1 bj-subcom φBAAB=0
13 12 oveq1d φBA-AB-XA=0XA
14 11 13 eqtrd φBA-XA-AB=0XA
15 14 oveq2d φXB+BAXA-AB=XB+0-XA
16 10 15 eqtrd φBAXA+XB-AB=XB+0-XA
17 0cnd φ0
18 8 17 6 addsubassd φXB+0-XA=XB+0-XA
19 8 addridd φXB+0=XB
20 19 oveq1d φXB+0-XA=XBXA
21 16 18 20 3eqtr2d φBAXA+XB-AB=XBXA
22 2 3 1 subdird φBXA=BAXA
23 3 1 2 subdird φXAB=XBAB
24 22 23 oveq12d φBXA+XAB=BAXA+XB-AB
25 3 2 1 subdid φXBA=XBXA
26 21 24 25 3eqtr4rd φXBA=BXA+XAB
27 26 oveq1d φXBABA=BXA+XABBA
28 2 3 subcld φBX
29 28 1 mulcld φBXA
30 3 1 subcld φXA
31 30 2 mulcld φXAB
32 2 1 subcld φBA
33 4 necomd φBA
34 2 1 33 subne0d φBA0
35 29 31 32 34 divdird φBXA+XABBA=BXABA+XABBA
36 27 35 eqtrd φXBABA=BXABA+XABBA
37 3 32 34 divcan4d φXBABA=X
38 28 1 32 34 div23d φBXABA=BXBAA
39 30 2 32 34 div23d φXABBA=XABAB
40 38 39 oveq12d φBXABA+XABBA=BXBAA+XABAB
41 36 37 40 3eqtr3d φX=BXBAA+XABAB