Metamath Proof Explorer


Theorem bj-restuni

Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni and restuni2 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restuni XVAWX𝑡A=XA

Proof

Step Hyp Ref Expression
1 eluni xX𝑡AyxyyX𝑡A
2 elrest XVAWyX𝑡AzXy=zA
3 2 anbi2d XVAWxyyX𝑡AxyzXy=zA
4 3 exbidv XVAWyxyyX𝑡AyxyzXy=zA
5 eluni xXzxzzX
6 5 bicomi zxzzXxX
7 6 anbi1i zxzzXxAxXxA
8 7 a1i XVAWzxzzXxAxXxA
9 df-rex zXy=zAzzXy=zA
10 9 anbi2i xyzXy=zAxyzzXy=zA
11 19.42v zxyzXy=zAxyzzXy=zA
12 11 bicomi xyzzXy=zAzxyzXy=zA
13 10 12 bitri xyzXy=zAzxyzXy=zA
14 13 exbii yxyzXy=zAyzxyzXy=zA
15 excom yzxyzXy=zAzyxyzXy=zA
16 an12 xyzXy=zAzXxyy=zA
17 16 exbii yxyzXy=zAyzXxyy=zA
18 19.42v yzXxyy=zAzXyxyy=zA
19 eqimss y=zAyzA
20 19 sseld y=zAxyxzA
21 20 imdistanri xyy=zAxzAy=zA
22 eqimss2 y=zAzAy
23 22 sseld y=zAxzAxy
24 23 imdistanri xzAy=zAxyy=zA
25 21 24 impbii xyy=zAxzAy=zA
26 25 exbii yxyy=zAyxzAy=zA
27 19.42v yxzAy=zAxzAyy=zA
28 vex zV
29 28 inex1 zAV
30 29 isseti yy=zA
31 30 biantru xzAxzAyy=zA
32 31 bicomi xzAyy=zAxzA
33 elin xzAxzxA
34 32 33 bitri xzAyy=zAxzxA
35 26 27 34 3bitri yxyy=zAxzxA
36 35 bianassc zXyxyy=zAxzzXxA
37 17 18 36 3bitri yxyzXy=zAxzzXxA
38 37 exbii zyxyzXy=zAzxzzXxA
39 19.41v zxzzXxAzxzzXxA
40 38 39 bitri zyxyzXy=zAzxzzXxA
41 14 15 40 3bitri yxyzXy=zAzxzzXxA
42 elin xXAxXxA
43 8 41 42 3bitr4g XVAWyxyzXy=zAxXA
44 4 43 bitrd XVAWyxyyX𝑡AxXA
45 1 44 bitrid XVAWxX𝑡AxXA
46 45 eqrdv XVAWX𝑡A=XA