Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni and restuni2 . (Contributed by BJ, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-restuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni | |
|
2 | elrest | |
|
3 | 2 | anbi2d | |
4 | 3 | exbidv | |
5 | eluni | |
|
6 | 5 | bicomi | |
7 | 6 | anbi1i | |
8 | 7 | a1i | |
9 | df-rex | |
|
10 | 9 | anbi2i | |
11 | 19.42v | |
|
12 | 11 | bicomi | |
13 | 10 12 | bitri | |
14 | 13 | exbii | |
15 | excom | |
|
16 | an12 | |
|
17 | 16 | exbii | |
18 | 19.42v | |
|
19 | eqimss | |
|
20 | 19 | sseld | |
21 | 20 | imdistanri | |
22 | eqimss2 | |
|
23 | 22 | sseld | |
24 | 23 | imdistanri | |
25 | 21 24 | impbii | |
26 | 25 | exbii | |
27 | 19.42v | |
|
28 | vex | |
|
29 | 28 | inex1 | |
30 | 29 | isseti | |
31 | 30 | biantru | |
32 | 31 | bicomi | |
33 | elin | |
|
34 | 32 33 | bitri | |
35 | 26 27 34 | 3bitri | |
36 | 35 | bianassc | |
37 | 17 18 36 | 3bitri | |
38 | 37 | exbii | |
39 | 19.41v | |
|
40 | 38 39 | bitri | |
41 | 14 15 40 | 3bitri | |
42 | elin | |
|
43 | 8 41 42 | 3bitr4g | |
44 | 4 43 | bitrd | |
45 | 1 44 | bitrid | |
46 | 45 | eqrdv | |