Metamath Proof Explorer


Theorem bj-snmoore

Description: A singleton is a Moore collection. See bj-snmooreb for a biconditional version. (Contributed by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmoore AVAMoore_

Proof

Step Hyp Ref Expression
1 unisng AVA=A
2 snidg AVAA
3 1 2 eqeltrd AVAA
4 df-ne x¬x=
5 sssn xAx=x=A
6 biorf ¬x=x=Ax=x=A
7 6 biimpar ¬x=x=x=Ax=A
8 4 5 7 syl2anb xxAx=A
9 inteq x=Ax=A
10 intsng AVA=A
11 eqtr x=AA=Ax=A
12 11 ex x=AA=Ax=A
13 9 10 12 syl2im x=AAVx=A
14 intex xxV
15 elsng xVxAx=A
16 14 15 sylbi xxAx=A
17 16 biimprd xx=AxA
18 13 17 sylan9r xx=AAVxA
19 8 18 syldan xxAAVxA
20 19 ancoms xAxAVxA
21 20 impcom AVxAxxA
22 3 21 bj-ismooredr2 AVAMoore_