Description: A singleton is a Moore collection. See bj-snmooreb for a biconditional version. (Contributed by BJ, 10-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snmoore | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng | |
|
2 | snidg | |
|
3 | 1 2 | eqeltrd | |
4 | df-ne | |
|
5 | sssn | |
|
6 | biorf | |
|
7 | 6 | biimpar | |
8 | 4 5 7 | syl2anb | |
9 | inteq | |
|
10 | intsng | |
|
11 | eqtr | |
|
12 | 11 | ex | |
13 | 9 10 12 | syl2im | |
14 | intex | |
|
15 | elsng | |
|
16 | 14 15 | sylbi | |
17 | 16 | biimprd | |
18 | 13 17 | sylan9r | |
19 | 8 18 | syldan | |
20 | 19 | ancoms | |
21 | 20 | impcom | |
22 | 3 21 | bj-ismooredr2 | |