Metamath Proof Explorer


Theorem bnj1177

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1177.2 ψXByByRX
bnj1177.3 C=trClXARB
bnj1177.9 φψRFrSeA
bnj1177.13 φψBA
bnj1177.17 φψXA
Assertion bnj1177 φψRFrACACCV

Proof

Step Hyp Ref Expression
1 bnj1177.2 ψXByByRX
2 bnj1177.3 C=trClXARB
3 bnj1177.9 φψRFrSeA
4 bnj1177.13 φψBA
5 bnj1177.17 φψXA
6 df-bnj15 RFrSeARFrARSeA
7 6 simplbi RFrSeARFrA
8 3 7 syl φψRFrA
9 bnj1147 trClXARA
10 ssinss1 trClXARAtrClXARBA
11 9 10 ax-mp trClXARBA
12 2 11 eqsstri CA
13 12 a1i φψCA
14 bnj906 RFrSeAXApredXARtrClXAR
15 3 5 14 syl2anc φψpredXARtrClXAR
16 15 ssrind φψpredXARBtrClXARB
17 1 simp2bi ψyB
18 17 adantl φψyB
19 4 18 sseldd φψyA
20 1 simp3bi ψyRX
21 20 adantl φψyRX
22 bnj1152 ypredXARyAyRX
23 19 21 22 sylanbrc φψypredXAR
24 23 18 elind φψypredXARB
25 16 24 sseldd φψytrClXARB
26 25 ne0d φψtrClXARB
27 2 neeq1i CtrClXARB
28 26 27 sylibr φψC
29 bnj893 RFrSeAXAtrClXARV
30 3 5 29 syl2anc φψtrClXARV
31 inex1g trClXARVtrClXARBV
32 2 31 eqeltrid trClXARVCV
33 30 32 syl φψCV
34 8 13 28 33 bnj951 φψRFrACACCV