Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1177.2 | |
|
bnj1177.3 | |
||
bnj1177.9 | |
||
bnj1177.13 | |
||
bnj1177.17 | |
||
Assertion | bnj1177 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1177.2 | |
|
2 | bnj1177.3 | |
|
3 | bnj1177.9 | |
|
4 | bnj1177.13 | |
|
5 | bnj1177.17 | |
|
6 | df-bnj15 | |
|
7 | 6 | simplbi | |
8 | 3 7 | syl | |
9 | bnj1147 | |
|
10 | ssinss1 | |
|
11 | 9 10 | ax-mp | |
12 | 2 11 | eqsstri | |
13 | 12 | a1i | |
14 | bnj906 | |
|
15 | 3 5 14 | syl2anc | |
16 | 15 | ssrind | |
17 | 1 | simp2bi | |
18 | 17 | adantl | |
19 | 4 18 | sseldd | |
20 | 1 | simp3bi | |
21 | 20 | adantl | |
22 | bnj1152 | |
|
23 | 19 21 22 | sylanbrc | |
24 | 23 18 | elind | |
25 | 16 24 | sseldd | |
26 | 25 | ne0d | |
27 | 2 | neeq1i | |
28 | 26 27 | sylibr | |
29 | bnj893 | |
|
30 | 3 5 29 | syl2anc | |
31 | inex1g | |
|
32 | 2 31 | eqeltrid | |
33 | 30 32 | syl | |
34 | 8 13 28 33 | bnj951 | |