Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1311.1 | |
|
bnj1311.2 | |
||
bnj1311.3 | |
||
bnj1311.4 | |
||
Assertion | bnj1311 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1311.1 | |
|
2 | bnj1311.2 | |
|
3 | bnj1311.3 | |
|
4 | bnj1311.4 | |
|
5 | biid | |
|
6 | 5 | bnj1232 | |
7 | ssrab2 | |
|
8 | 5 | bnj1235 | |
9 | eqid | |
|
10 | eqid | |
|
11 | 2 3 9 10 | bnj1234 | |
12 | 8 11 | eleqtrdi | |
13 | abid | |
|
14 | 13 | bnj1238 | |
15 | 14 | bnj1196 | |
16 | 1 | eqabri | |
17 | 16 | simplbi | |
18 | fndm | |
|
19 | 17 18 | bnj1241 | |
20 | 15 19 | bnj593 | |
21 | 20 | bnj937 | |
22 | ssinss1 | |
|
23 | 12 21 22 | 3syl | |
24 | 4 23 | eqsstrid | |
25 | 7 24 | sstrid | |
26 | eqid | |
|
27 | biid | |
|
28 | 1 2 3 4 26 5 27 | bnj1253 | |
29 | nfrab1 | |
|
30 | 29 | nfcrii | |
31 | 30 | bnj1228 | |
32 | 6 25 28 31 | syl3anc | |
33 | ax-5 | |
|
34 | 1 | bnj1309 | |
35 | 3 34 | bnj1307 | |
36 | 35 | hblem | |
37 | 35 | hblem | |
38 | ax-5 | |
|
39 | 33 36 37 38 | bnj982 | |
40 | 32 27 39 | bnj1521 | |
41 | simp2 | |
|
42 | 1 2 3 4 26 5 27 | bnj1279 | |
43 | 42 | 3adant1 | |
44 | 1 2 3 4 26 5 27 43 | bnj1280 | |
45 | eqid | |
|
46 | eqid | |
|
47 | 1 2 3 4 26 5 27 44 9 10 45 46 | bnj1296 | |
48 | 26 | bnj1538 | |
49 | 48 | necon2bi | |
50 | 47 49 | syl | |
51 | 40 41 50 | bnj1304 | |
52 | df-bnj17 | |
|
53 | 51 52 | mtbi | |
54 | 53 | imnani | |
55 | nne | |
|
56 | 54 55 | sylib | |