Metamath Proof Explorer


Theorem bnj1311

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1311.1 B=d|dAxdpredxARd
bnj1311.2 Y=xfpredxAR
bnj1311.3 C=f|dBfFndxdfx=GY
bnj1311.4 D=domgdomh
Assertion bnj1311 RFrSeAgChCgD=hD

Proof

Step Hyp Ref Expression
1 bnj1311.1 B=d|dAxdpredxARd
2 bnj1311.2 Y=xfpredxAR
3 bnj1311.3 C=f|dBfFndxdfx=GY
4 bnj1311.4 D=domgdomh
5 biid RFrSeAgChCgDhDRFrSeAgChCgDhD
6 5 bnj1232 RFrSeAgChCgDhDRFrSeA
7 ssrab2 xD|gxhxD
8 5 bnj1235 RFrSeAgChCgDhDgC
9 eqid xgpredxAR=xgpredxAR
10 eqid g|dBgFndxdgx=GxgpredxAR=g|dBgFndxdgx=GxgpredxAR
11 2 3 9 10 bnj1234 C=g|dBgFndxdgx=GxgpredxAR
12 8 11 eleqtrdi RFrSeAgChCgDhDgg|dBgFndxdgx=GxgpredxAR
13 abid gg|dBgFndxdgx=GxgpredxARdBgFndxdgx=GxgpredxAR
14 13 bnj1238 gg|dBgFndxdgx=GxgpredxARdBgFnd
15 14 bnj1196 gg|dBgFndxdgx=GxgpredxARddBgFnd
16 1 eqabri dBdAxdpredxARd
17 16 simplbi dBdA
18 fndm gFnddomg=d
19 17 18 bnj1241 dBgFnddomgA
20 15 19 bnj593 gg|dBgFndxdgx=GxgpredxARddomgA
21 20 bnj937 gg|dBgFndxdgx=GxgpredxARdomgA
22 ssinss1 domgAdomgdomhA
23 12 21 22 3syl RFrSeAgChCgDhDdomgdomhA
24 4 23 eqsstrid RFrSeAgChCgDhDDA
25 7 24 sstrid RFrSeAgChCgDhDxD|gxhxA
26 eqid xD|gxhx=xD|gxhx
27 biid RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRxRFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRx
28 1 2 3 4 26 5 27 bnj1253 RFrSeAgChCgDhDxD|gxhx
29 nfrab1 _xxD|gxhx
30 29 nfcrii zxD|gxhxxzxD|gxhx
31 30 bnj1228 RFrSeAxD|gxhxAxD|gxhxxxD|gxhxyxD|gxhx¬yRx
32 6 25 28 31 syl3anc RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRx
33 ax-5 RFrSeAxRFrSeA
34 1 bnj1309 wBxwB
35 3 34 bnj1307 wCxwC
36 35 hblem gCxgC
37 35 hblem hCxhC
38 ax-5 gDhDxgDhD
39 33 36 37 38 bnj982 RFrSeAgChCgDhDxRFrSeAgChCgDhD
40 32 27 39 bnj1521 RFrSeAgChCgDhDxRFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRx
41 simp2 RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRxxxD|gxhx
42 1 2 3 4 26 5 27 bnj1279 xxD|gxhxyxD|gxhx¬yRxpredxARxD|gxhx=
43 42 3adant1 RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRxpredxARxD|gxhx=
44 1 2 3 4 26 5 27 43 bnj1280 RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRxgpredxAR=hpredxAR
45 eqid xhpredxAR=xhpredxAR
46 eqid h|dBhFndxdhx=GxhpredxAR=h|dBhFndxdhx=GxhpredxAR
47 1 2 3 4 26 5 27 44 9 10 45 46 bnj1296 RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRxgx=hx
48 26 bnj1538 xxD|gxhxgxhx
49 48 necon2bi gx=hx¬xxD|gxhx
50 47 49 syl RFrSeAgChCgDhDxxD|gxhxyxD|gxhx¬yRx¬xxD|gxhx
51 40 41 50 bnj1304 ¬RFrSeAgChCgDhD
52 df-bnj17 RFrSeAgChCgDhDRFrSeAgChCgDhD
53 51 52 mtbi ¬RFrSeAgChCgDhD
54 53 imnani RFrSeAgChC¬gDhD
55 nne ¬gDhDgD=hD
56 54 55 sylib RFrSeAgChCgD=hD