Metamath Proof Explorer


Theorem boxriin

Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion boxriin x I A B x I A = x I B y I x I if x = y A B

Proof

Step Hyp Ref Expression
1 simprl x I A B z Fn I x I z x A z Fn I
2 ssel A B z x A z x B
3 2 ral2imi x I A B x I z x A x I z x B
4 3 adantr x I A B z Fn I x I z x A x I z x B
5 4 impr x I A B z Fn I x I z x A x I z x B
6 eleq2 A = if x = y A B z x A z x if x = y A B
7 eleq2 B = if x = y A B z x B z x if x = y A B
8 simplr A B z x A x = y z x A
9 ssel2 A B z x A z x B
10 9 adantr A B z x A ¬ x = y z x B
11 6 7 8 10 ifbothda A B z x A z x if x = y A B
12 11 ex A B z x A z x if x = y A B
13 12 ral2imi x I A B x I z x A x I z x if x = y A B
14 13 adantr x I A B z Fn I x I z x A x I z x if x = y A B
15 14 impr x I A B z Fn I x I z x A x I z x if x = y A B
16 1 15 jca x I A B z Fn I x I z x A z Fn I x I z x if x = y A B
17 16 ralrimivw x I A B z Fn I x I z x A y I z Fn I x I z x if x = y A B
18 1 5 17 jca31 x I A B z Fn I x I z x A z Fn I x I z x B y I z Fn I x I z x if x = y A B
19 simprll x I A B z Fn I x I z x B y I z Fn I x I z x if x = y A B z Fn I
20 simpr z Fn I x I z x if x = y A B x I z x if x = y A B
21 20 ralimi y I z Fn I x I z x if x = y A B y I x I z x if x = y A B
22 ralcom y I x I z x if x = y A B x I y I z x if x = y A B
23 iftrue x = y if x = y A B = A
24 23 equcoms y = x if x = y A B = A
25 24 eleq2d y = x z x if x = y A B z x A
26 25 rspcva x I y I z x if x = y A B z x A
27 26 ralimiaa x I y I z x if x = y A B x I z x A
28 22 27 sylbi y I x I z x if x = y A B x I z x A
29 21 28 syl y I z Fn I x I z x if x = y A B x I z x A
30 29 ad2antll x I A B z Fn I x I z x B y I z Fn I x I z x if x = y A B x I z x A
31 19 30 jca x I A B z Fn I x I z x B y I z Fn I x I z x if x = y A B z Fn I x I z x A
32 18 31 impbida x I A B z Fn I x I z x A z Fn I x I z x B y I z Fn I x I z x if x = y A B
33 vex z V
34 33 elixp z x I A z Fn I x I z x A
35 elin z x I B y I x I if x = y A B z x I B z y I x I if x = y A B
36 33 elixp z x I B z Fn I x I z x B
37 eliin z V z y I x I if x = y A B y I z x I if x = y A B
38 37 elv z y I x I if x = y A B y I z x I if x = y A B
39 33 elixp z x I if x = y A B z Fn I x I z x if x = y A B
40 39 ralbii y I z x I if x = y A B y I z Fn I x I z x if x = y A B
41 38 40 bitri z y I x I if x = y A B y I z Fn I x I z x if x = y A B
42 36 41 anbi12i z x I B z y I x I if x = y A B z Fn I x I z x B y I z Fn I x I z x if x = y A B
43 35 42 bitri z x I B y I x I if x = y A B z Fn I x I z x B y I z Fn I x I z x if x = y A B
44 32 34 43 3bitr4g x I A B z x I A z x I B y I x I if x = y A B
45 44 eqrdv x I A B x I A = x I B y I x I if x = y A B