Metamath Proof Explorer


Theorem boxriin

Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion boxriin xIABxIA=xIByIxIifx=yAB

Proof

Step Hyp Ref Expression
1 simprl xIABzFnIxIzxAzFnI
2 ssel ABzxAzxB
3 2 ral2imi xIABxIzxAxIzxB
4 3 adantr xIABzFnIxIzxAxIzxB
5 4 impr xIABzFnIxIzxAxIzxB
6 eleq2 A=ifx=yABzxAzxifx=yAB
7 eleq2 B=ifx=yABzxBzxifx=yAB
8 simplr ABzxAx=yzxA
9 ssel2 ABzxAzxB
10 9 adantr ABzxA¬x=yzxB
11 6 7 8 10 ifbothda ABzxAzxifx=yAB
12 11 ex ABzxAzxifx=yAB
13 12 ral2imi xIABxIzxAxIzxifx=yAB
14 13 adantr xIABzFnIxIzxAxIzxifx=yAB
15 14 impr xIABzFnIxIzxAxIzxifx=yAB
16 1 15 jca xIABzFnIxIzxAzFnIxIzxifx=yAB
17 16 ralrimivw xIABzFnIxIzxAyIzFnIxIzxifx=yAB
18 1 5 17 jca31 xIABzFnIxIzxAzFnIxIzxByIzFnIxIzxifx=yAB
19 simprll xIABzFnIxIzxByIzFnIxIzxifx=yABzFnI
20 simpr zFnIxIzxifx=yABxIzxifx=yAB
21 20 ralimi yIzFnIxIzxifx=yAByIxIzxifx=yAB
22 ralcom yIxIzxifx=yABxIyIzxifx=yAB
23 iftrue x=yifx=yAB=A
24 23 equcoms y=xifx=yAB=A
25 24 eleq2d y=xzxifx=yABzxA
26 25 rspcva xIyIzxifx=yABzxA
27 26 ralimiaa xIyIzxifx=yABxIzxA
28 22 27 sylbi yIxIzxifx=yABxIzxA
29 21 28 syl yIzFnIxIzxifx=yABxIzxA
30 29 ad2antll xIABzFnIxIzxByIzFnIxIzxifx=yABxIzxA
31 19 30 jca xIABzFnIxIzxByIzFnIxIzxifx=yABzFnIxIzxA
32 18 31 impbida xIABzFnIxIzxAzFnIxIzxByIzFnIxIzxifx=yAB
33 vex zV
34 33 elixp zxIAzFnIxIzxA
35 elin zxIByIxIifx=yABzxIBzyIxIifx=yAB
36 33 elixp zxIBzFnIxIzxB
37 eliin zVzyIxIifx=yAByIzxIifx=yAB
38 37 elv zyIxIifx=yAByIzxIifx=yAB
39 33 elixp zxIifx=yABzFnIxIzxifx=yAB
40 39 ralbii yIzxIifx=yAByIzFnIxIzxifx=yAB
41 38 40 bitri zyIxIifx=yAByIzFnIxIzxifx=yAB
42 36 41 anbi12i zxIBzyIxIifx=yABzFnIxIzxByIzFnIxIzxifx=yAB
43 35 42 bitri zxIByIxIifx=yABzFnIxIzxByIzFnIxIzxifx=yAB
44 32 34 43 3bitr4g xIABzxIAzxIByIxIifx=yAB
45 44 eqrdv xIABxIA=xIByIxIifx=yAB