Metamath Proof Explorer


Theorem boxcutc

Description: The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion boxcutc XAkACBkABkAifk=XCB=kAifk=XBCB

Proof

Step Hyp Ref Expression
1 eldifi zkABkAifk=XCBzkAB
2 1 adantl XAkACBzkABkAifk=XCBzkAB
3 sseq1 BC=ifk=XBCBBCBifk=XBCBB
4 sseq1 B=ifk=XBCBBBifk=XBCBB
5 difss BCB
6 ssid BB
7 3 4 5 6 keephyp ifk=XBCBB
8 7 rgenw kAifk=XBCBB
9 ss2ixp kAifk=XBCBBkAifk=XBCBkAB
10 8 9 mp1i XAkACBkAifk=XBCBkAB
11 10 sselda XAkACBzkAifk=XBCBzkAB
12 vex zV
13 12 elixp zkAifk=XCBzFnAkAzkifk=XCB
14 ixpfn zkABzFnA
15 14 adantl XAkACBzkABzFnA
16 15 biantrurd XAkACBzkABkAzkifk=XCBzFnAkAzkifk=XCB
17 13 16 bitr4id XAkACBzkABzkAifk=XCBkAzkifk=XCB
18 17 notbid XAkACBzkAB¬zkAifk=XCB¬kAzkifk=XCB
19 rexnal kA¬zkifk=XCB¬kAzkifk=XCB
20 eleq2 m/kBm/kC=ifm=Xm/kBm/kCm/kBzmm/kBm/kCzmifm=Xm/kBm/kCm/kB
21 eleq2 m/kB=ifm=Xm/kBm/kCm/kBzmm/kBzmifm=Xm/kBm/kCm/kB
22 eleq2 l/kC=ifl=Xl/kCl/kBzll/kCzlifl=Xl/kCl/kB
23 eleq2 l/kB=ifl=Xl/kCl/kBzll/kBzlifl=Xl/kCl/kB
24 simpl XAkACBXA
25 12 elixp zkABzFnAkAzkB
26 25 simprbi zkABkAzkB
27 nfv lzkB
28 nfcsb1v _kl/kB
29 28 nfel2 kzll/kB
30 fveq2 k=lzk=zl
31 csbeq1a k=lB=l/kB
32 30 31 eleq12d k=lzkBzll/kB
33 27 29 32 cbvralw kAzkBlAzll/kB
34 26 33 sylib zkABlAzll/kB
35 fveq2 l=Xzl=zX
36 csbeq1 l=Xl/kB=X/kB
37 35 36 eleq12d l=Xzll/kBzXX/kB
38 37 rspcva XAlAzll/kBzXX/kB
39 24 34 38 syl2an XAkACBzkABzXX/kB
40 neldif zXX/kB¬zXX/kBX/kCzXX/kC
41 39 40 sylan XAkACBzkAB¬zXX/kBX/kCzXX/kC
42 41 adantr XAkACBzkAB¬zXX/kBX/kClAzXX/kC
43 csbeq1 l=Xl/kC=X/kC
44 35 43 eleq12d l=Xzll/kCzXX/kC
45 42 44 syl5ibrcom XAkACBzkAB¬zXX/kBX/kClAl=Xzll/kC
46 45 imp XAkACBzkAB¬zXX/kBX/kClAl=Xzll/kC
47 34 ad2antlr XAkACBzkAB¬zXX/kBX/kClAzll/kB
48 47 r19.21bi XAkACBzkAB¬zXX/kBX/kClAzll/kB
49 48 adantr XAkACBzkAB¬zXX/kBX/kClA¬l=Xzll/kB
50 22 23 46 49 ifbothda XAkACBzkAB¬zXX/kBX/kClAzlifl=Xl/kCl/kB
51 50 ralrimiva XAkACBzkAB¬zXX/kBX/kClAzlifl=Xl/kCl/kB
52 dfral2 lAzlifl=Xl/kCl/kB¬lA¬zlifl=Xl/kCl/kB
53 51 52 sylib XAkACBzkAB¬zXX/kBX/kC¬lA¬zlifl=Xl/kCl/kB
54 53 ex XAkACBzkAB¬zXX/kBX/kC¬lA¬zlifl=Xl/kCl/kB
55 54 con4d XAkACBzkABlA¬zlifl=Xl/kCl/kBzXX/kBX/kC
56 55 imp XAkACBzkABlA¬zlifl=Xl/kCl/kBzXX/kBX/kC
57 56 adantr XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzXX/kBX/kC
58 fveq2 m=Xzm=zX
59 csbeq1 m=Xm/kB=X/kB
60 csbeq1 m=Xm/kC=X/kC
61 59 60 difeq12d m=Xm/kBm/kC=X/kBX/kC
62 58 61 eleq12d m=Xzmm/kBm/kCzXX/kBX/kC
63 57 62 syl5ibrcom XAkACBzkABlA¬zlifl=Xl/kCl/kBmAm=Xzmm/kBm/kC
64 63 imp XAkACBzkABlA¬zlifl=Xl/kCl/kBmAm=Xzmm/kBm/kC
65 nfv mzkB
66 nfcsb1v _km/kB
67 66 nfel2 kzmm/kB
68 fveq2 k=mzk=zm
69 csbeq1a k=mB=m/kB
70 68 69 eleq12d k=mzkBzmm/kB
71 65 67 70 cbvralw kAzkBmAzmm/kB
72 26 71 sylib zkABmAzmm/kB
73 72 ad2antlr XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzmm/kB
74 73 r19.21bi XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzmm/kB
75 74 adantr XAkACBzkABlA¬zlifl=Xl/kCl/kBmA¬m=Xzmm/kB
76 20 21 64 75 ifbothda XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzmifm=Xm/kBm/kCm/kB
77 76 ralrimiva XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzmifm=Xm/kBm/kCm/kB
78 simpll XAkACBzkABXA
79 iftrue m=Xifm=Xm/kBm/kCm/kB=m/kBm/kC
80 79 61 eqtrd m=Xifm=Xm/kBm/kCm/kB=X/kBX/kC
81 58 80 eleq12d m=Xzmifm=Xm/kBm/kCm/kBzXX/kBX/kC
82 81 rspcva XAmAzmifm=Xm/kBm/kCm/kBzXX/kBX/kC
83 78 82 sylan XAkACBzkABmAzmifm=Xm/kBm/kCm/kBzXX/kBX/kC
84 83 eldifbd XAkACBzkABmAzmifm=Xm/kBm/kCm/kB¬zXX/kC
85 iftrue l=Xifl=Xl/kCl/kB=l/kC
86 85 43 eqtrd l=Xifl=Xl/kCl/kB=X/kC
87 35 86 eleq12d l=Xzlifl=Xl/kCl/kBzXX/kC
88 87 notbid l=X¬zlifl=Xl/kCl/kB¬zXX/kC
89 88 rspcev XA¬zXX/kClA¬zlifl=Xl/kCl/kB
90 78 84 89 syl2an2r XAkACBzkABmAzmifm=Xm/kBm/kCm/kBlA¬zlifl=Xl/kCl/kB
91 77 90 impbida XAkACBzkABlA¬zlifl=Xl/kCl/kBmAzmifm=Xm/kBm/kCm/kB
92 nfv l¬zkifk=XCB
93 nfv kl=X
94 nfcsb1v _kl/kC
95 93 94 28 nfif _kifl=Xl/kCl/kB
96 95 nfel2 kzlifl=Xl/kCl/kB
97 96 nfn k¬zlifl=Xl/kCl/kB
98 eqeq1 k=lk=Xl=X
99 csbeq1a k=lC=l/kC
100 98 99 31 ifbieq12d k=lifk=XCB=ifl=Xl/kCl/kB
101 30 100 eleq12d k=lzkifk=XCBzlifl=Xl/kCl/kB
102 101 notbid k=l¬zkifk=XCB¬zlifl=Xl/kCl/kB
103 92 97 102 cbvrexw kA¬zkifk=XCBlA¬zlifl=Xl/kCl/kB
104 nfv mzkifk=XBCB
105 nfv km=X
106 nfcsb1v _km/kC
107 66 106 nfdif _km/kBm/kC
108 105 107 66 nfif _kifm=Xm/kBm/kCm/kB
109 108 nfel2 kzmifm=Xm/kBm/kCm/kB
110 eqeq1 k=mk=Xm=X
111 csbeq1a k=mC=m/kC
112 69 111 difeq12d k=mBC=m/kBm/kC
113 110 112 69 ifbieq12d k=mifk=XBCB=ifm=Xm/kBm/kCm/kB
114 68 113 eleq12d k=mzkifk=XBCBzmifm=Xm/kBm/kCm/kB
115 104 109 114 cbvralw kAzkifk=XBCBmAzmifm=Xm/kBm/kCm/kB
116 91 103 115 3bitr4g XAkACBzkABkA¬zkifk=XCBkAzkifk=XBCB
117 19 116 bitr3id XAkACBzkAB¬kAzkifk=XCBkAzkifk=XBCB
118 18 117 bitrd XAkACBzkAB¬zkAifk=XCBkAzkifk=XBCB
119 ibar zkAB¬zkAifk=XCBzkAB¬zkAifk=XCB
120 119 adantl XAkACBzkAB¬zkAifk=XCBzkAB¬zkAifk=XCB
121 15 biantrurd XAkACBzkABkAzkifk=XBCBzFnAkAzkifk=XBCB
122 118 120 121 3bitr3d XAkACBzkABzkAB¬zkAifk=XCBzFnAkAzkifk=XBCB
123 eldif zkABkAifk=XCBzkAB¬zkAifk=XCB
124 12 elixp zkAifk=XBCBzFnAkAzkifk=XBCB
125 122 123 124 3bitr4g XAkACBzkABzkABkAifk=XCBzkAifk=XBCB
126 2 11 125 eqrdav XAkACBkABkAifk=XCB=kAifk=XBCB