Metamath Proof Explorer


Theorem bpoly0

Description: The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpoly0 X0BernPolyX=1

Proof

Step Hyp Ref Expression
1 0nn0 00
2 bpolyval 00X0BernPolyX=X0k=001(0k)kBernPolyX0-k+1
3 1 2 mpan X0BernPolyX=X0k=001(0k)kBernPolyX0-k+1
4 exp0 XX0=1
5 4 oveq1d XX0k=001(0k)kBernPolyX0-k+1=1k=001(0k)kBernPolyX0-k+1
6 risefall0lem 001=
7 6 sumeq1i k=001(0k)kBernPolyX0-k+1=k(0k)kBernPolyX0-k+1
8 sum0 k(0k)kBernPolyX0-k+1=0
9 7 8 eqtri k=001(0k)kBernPolyX0-k+1=0
10 9 oveq2i 1k=001(0k)kBernPolyX0-k+1=10
11 1m0e1 10=1
12 10 11 eqtri 1k=001(0k)kBernPolyX0-k+1=1
13 5 12 eqtrdi XX0k=001(0k)kBernPolyX0-k+1=1
14 3 13 eqtrd X0BernPolyX=1