Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Proof shortened by AV, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bropopvvv.o | |
|
bropopvvv.p | |
||
bropopvvv.oo | |
||
Assertion | bropopvvv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bropopvvv.o | |
|
2 | bropopvvv.p | |
|
3 | bropopvvv.oo | |
|
4 | brovpreldm | |
|
5 | simpl | |
|
6 | 2 | opabbidv | |
7 | 5 5 6 | mpoeq123dv | |
8 | 7 1 | ovmpoga | |
9 | 8 | dmeqd | |
10 | 9 | eleq2d | |
11 | dmoprabss | |
|
12 | 11 | sseli | |
13 | opelxp | |
|
14 | df-br | |
|
15 | ne0i | |
|
16 | 3 | breqd | |
17 | brabv | |
|
18 | 17 | anim2i | |
19 | 18 | ex | |
20 | 19 | adantr | |
21 | 16 20 | sylbid | |
22 | 21 | ex | |
23 | 22 | com23 | |
24 | 23 | a1d | |
25 | 1 | mpondm0 | |
26 | df-ov | |
|
27 | fveq1 | |
|
28 | 26 27 | eqtrid | |
29 | 0fv | |
|
30 | 28 29 | eqtrdi | |
31 | eqneqall | |
|
32 | 25 30 31 | 3syl | |
33 | 24 32 | pm2.61i | |
34 | 15 33 | syl | |
35 | 14 34 | sylbi | |
36 | 35 | pm2.43i | |
37 | 36 | com12 | |
38 | 37 | anc2ri | |
39 | df-3an | |
|
40 | 38 39 | imbitrrdi | |
41 | 13 40 | sylbi | |
42 | 12 41 | syl | |
43 | df-mpo | |
|
44 | 43 | dmeqi | |
45 | 42 44 | eleq2s | |
46 | 10 45 | syl6bi | |
47 | 3ianor | |
|
48 | df-3or | |
|
49 | ianor | |
|
50 | 25 | dmeqd | |
51 | 50 | eleq2d | |
52 | dm0 | |
|
53 | 52 | eleq2i | |
54 | 51 53 | bitrdi | |
55 | noel | |
|
56 | 55 | pm2.21i | |
57 | 54 56 | syl6bi | |
58 | 49 57 | sylbir | |
59 | anor | |
|
60 | id | |
|
61 | 60 | ancri | |
62 | 61 | adantr | |
63 | mpoexga | |
|
64 | 62 63 | syl | |
65 | 64 | pm2.24d | |
66 | 59 65 | sylbir | |
67 | 66 | imp | |
68 | 58 67 | jaoi3 | |
69 | 48 68 | sylbi | |
70 | 47 69 | sylbi | |
71 | 46 70 | pm2.61i | |
72 | 4 71 | syl | |
73 | 72 | pm2.43i | |