Metamath Proof Explorer


Theorem bropopvvv

Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Proof shortened by AV, 3-Jan-2021)

Ref Expression
Hypotheses bropopvvv.o O=vV,eVav,bvfp|φ
bropopvvv.p v=Ve=Eφψ
bropopvvv.oo VVEVAVBVAVOEB=fp|θ
Assertion bropopvvv FAVOEBPVVEVFVPVAVBV

Proof

Step Hyp Ref Expression
1 bropopvvv.o O=vV,eVav,bvfp|φ
2 bropopvvv.p v=Ve=Eφψ
3 bropopvvv.oo VVEVAVBVAVOEB=fp|θ
4 brovpreldm FAVOEBPABdomVOE
5 simpl v=Ve=Ev=V
6 2 opabbidv v=Ve=Efp|φ=fp|ψ
7 5 5 6 mpoeq123dv v=Ve=Eav,bvfp|φ=aV,bVfp|ψ
8 7 1 ovmpoga VVEVaV,bVfp|ψVVOE=aV,bVfp|ψ
9 8 dmeqd VVEVaV,bVfp|ψVdomVOE=domaV,bVfp|ψ
10 9 eleq2d VVEVaV,bVfp|ψVABdomVOEABdomaV,bVfp|ψ
11 dmoprabss domabc|aVbVc=fp|ψV×V
12 11 sseli ABdomabc|aVbVc=fp|ψABV×V
13 opelxp ABV×VAVBV
14 df-br FAVOEBPFPAVOEB
15 ne0i FPAVOEBAVOEB
16 3 breqd VVEVAVBVFAVOEBPFfp|θP
17 brabv Ffp|θPFVPV
18 17 anim2i VVEVFfp|θPVVEVFVPV
19 18 ex VVEVFfp|θPVVEVFVPV
20 19 adantr VVEVAVBVFfp|θPVVEVFVPV
21 16 20 sylbid VVEVAVBVFAVOEBPVVEVFVPV
22 21 ex VVEVAVBVFAVOEBPVVEVFVPV
23 22 com23 VVEVFAVOEBPAVBVVVEVFVPV
24 23 a1d VVEVAVOEBFAVOEBPAVBVVVEVFVPV
25 1 mpondm0 ¬VVEVVOE=
26 df-ov AVOEB=VOEAB
27 fveq1 VOE=VOEAB=AB
28 26 27 eqtrid VOE=AVOEB=AB
29 0fv AB=
30 28 29 eqtrdi VOE=AVOEB=
31 eqneqall AVOEB=AVOEBFAVOEBPAVBVVVEVFVPV
32 25 30 31 3syl ¬VVEVAVOEBFAVOEBPAVBVVVEVFVPV
33 24 32 pm2.61i AVOEBFAVOEBPAVBVVVEVFVPV
34 15 33 syl FPAVOEBFAVOEBPAVBVVVEVFVPV
35 14 34 sylbi FAVOEBPFAVOEBPAVBVVVEVFVPV
36 35 pm2.43i FAVOEBPAVBVVVEVFVPV
37 36 com12 AVBVFAVOEBPVVEVFVPV
38 37 anc2ri AVBVFAVOEBPVVEVFVPVAVBV
39 df-3an VVEVFVPVAVBVVVEVFVPVAVBV
40 38 39 imbitrrdi AVBVFAVOEBPVVEVFVPVAVBV
41 13 40 sylbi ABV×VFAVOEBPVVEVFVPVAVBV
42 12 41 syl ABdomabc|aVbVc=fp|ψFAVOEBPVVEVFVPVAVBV
43 df-mpo aV,bVfp|ψ=abc|aVbVc=fp|ψ
44 43 dmeqi domaV,bVfp|ψ=domabc|aVbVc=fp|ψ
45 42 44 eleq2s ABdomaV,bVfp|ψFAVOEBPVVEVFVPVAVBV
46 10 45 syl6bi VVEVaV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
47 3ianor ¬VVEVaV,bVfp|ψV¬VV¬EV¬aV,bVfp|ψV
48 df-3or ¬VV¬EV¬aV,bVfp|ψV¬VV¬EV¬aV,bVfp|ψV
49 ianor ¬VVEV¬VV¬EV
50 25 dmeqd ¬VVEVdomVOE=dom
51 50 eleq2d ¬VVEVABdomVOEABdom
52 dm0 dom=
53 52 eleq2i ABdomAB
54 51 53 bitrdi ¬VVEVABdomVOEAB
55 noel ¬AB
56 55 pm2.21i ABFAVOEBPVVEVFVPVAVBV
57 54 56 syl6bi ¬VVEVABdomVOEFAVOEBPVVEVFVPVAVBV
58 49 57 sylbir ¬VV¬EVABdomVOEFAVOEBPVVEVFVPVAVBV
59 anor VVEV¬¬VV¬EV
60 id VVVV
61 60 ancri VVVVVV
62 61 adantr VVEVVVVV
63 mpoexga VVVVaV,bVfp|ψV
64 62 63 syl VVEVaV,bVfp|ψV
65 64 pm2.24d VVEV¬aV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
66 59 65 sylbir ¬¬VV¬EV¬aV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
67 66 imp ¬¬VV¬EV¬aV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
68 58 67 jaoi3 ¬VV¬EV¬aV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
69 48 68 sylbi ¬VV¬EV¬aV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
70 47 69 sylbi ¬VVEVaV,bVfp|ψVABdomVOEFAVOEBPVVEVFVPVAVBV
71 46 70 pm2.61i ABdomVOEFAVOEBPVVEVFVPVAVBV
72 4 71 syl FAVOEBPFAVOEBPVVEVFVPVAVBV
73 72 pm2.43i FAVOEBPVVEVFVPVAVBV