Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | c0mhm.b | |
|
c0mhm.0 | |
||
c0mhm.h | |
||
Assertion | c0mgm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0mhm.b | |
|
2 | c0mhm.0 | |
|
3 | c0mhm.h | |
|
4 | mndmgm | |
|
5 | 4 | anim2i | |
6 | eqid | |
|
7 | 6 2 | mndidcl | |
8 | 7 | adantl | |
9 | 8 | adantr | |
10 | 9 3 | fmptd | |
11 | 7 | ancli | |
12 | 11 | adantl | |
13 | eqid | |
|
14 | 6 13 2 | mndlid | |
15 | 12 14 | syl | |
16 | 15 | adantr | |
17 | 3 | a1i | |
18 | eqidd | |
|
19 | simprl | |
|
20 | 8 | adantr | |
21 | 17 18 19 20 | fvmptd | |
22 | eqidd | |
|
23 | simprr | |
|
24 | 17 22 23 20 | fvmptd | |
25 | 21 24 | oveq12d | |
26 | eqidd | |
|
27 | eqid | |
|
28 | 1 27 | mgmcl | |
29 | 28 | 3expb | |
30 | 29 | adantlr | |
31 | 17 26 30 20 | fvmptd | |
32 | 16 25 31 | 3eqtr4rd | |
33 | 32 | ralrimivva | |
34 | 10 33 | jca | |
35 | 1 6 27 13 | ismgmhm | |
36 | 5 34 35 | sylanbrc | |