Metamath Proof Explorer


Theorem c0mgm

Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B = Base S
c0mhm.0 0 ˙ = 0 T
c0mhm.h H = x B 0 ˙
Assertion c0mgm S Mgm T Mnd H S MgmHom T

Proof

Step Hyp Ref Expression
1 c0mhm.b B = Base S
2 c0mhm.0 0 ˙ = 0 T
3 c0mhm.h H = x B 0 ˙
4 mndmgm T Mnd T Mgm
5 4 anim2i S Mgm T Mnd S Mgm T Mgm
6 eqid Base T = Base T
7 6 2 mndidcl T Mnd 0 ˙ Base T
8 7 adantl S Mgm T Mnd 0 ˙ Base T
9 8 adantr S Mgm T Mnd x B 0 ˙ Base T
10 9 3 fmptd S Mgm T Mnd H : B Base T
11 7 ancli T Mnd T Mnd 0 ˙ Base T
12 11 adantl S Mgm T Mnd T Mnd 0 ˙ Base T
13 eqid + T = + T
14 6 13 2 mndlid T Mnd 0 ˙ Base T 0 ˙ + T 0 ˙ = 0 ˙
15 12 14 syl S Mgm T Mnd 0 ˙ + T 0 ˙ = 0 ˙
16 15 adantr S Mgm T Mnd a B b B 0 ˙ + T 0 ˙ = 0 ˙
17 3 a1i S Mgm T Mnd a B b B H = x B 0 ˙
18 eqidd S Mgm T Mnd a B b B x = a 0 ˙ = 0 ˙
19 simprl S Mgm T Mnd a B b B a B
20 8 adantr S Mgm T Mnd a B b B 0 ˙ Base T
21 17 18 19 20 fvmptd S Mgm T Mnd a B b B H a = 0 ˙
22 eqidd S Mgm T Mnd a B b B x = b 0 ˙ = 0 ˙
23 simprr S Mgm T Mnd a B b B b B
24 17 22 23 20 fvmptd S Mgm T Mnd a B b B H b = 0 ˙
25 21 24 oveq12d S Mgm T Mnd a B b B H a + T H b = 0 ˙ + T 0 ˙
26 eqidd S Mgm T Mnd a B b B x = a + S b 0 ˙ = 0 ˙
27 eqid + S = + S
28 1 27 mgmcl S Mgm a B b B a + S b B
29 28 3expb S Mgm a B b B a + S b B
30 29 adantlr S Mgm T Mnd a B b B a + S b B
31 17 26 30 20 fvmptd S Mgm T Mnd a B b B H a + S b = 0 ˙
32 16 25 31 3eqtr4rd S Mgm T Mnd a B b B H a + S b = H a + T H b
33 32 ralrimivva S Mgm T Mnd a B b B H a + S b = H a + T H b
34 10 33 jca S Mgm T Mnd H : B Base T a B b B H a + S b = H a + T H b
35 1 6 27 13 ismgmhm H S MgmHom T S Mgm T Mgm H : B Base T a B b B H a + S b = H a + T H b
36 5 34 35 sylanbrc S Mgm T Mnd H S MgmHom T