Metamath Proof Explorer


Theorem c0mgm

Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B=BaseS
c0mhm.0 0˙=0T
c0mhm.h H=xB0˙
Assertion c0mgm SMgmTMndHSMgmHomT

Proof

Step Hyp Ref Expression
1 c0mhm.b B=BaseS
2 c0mhm.0 0˙=0T
3 c0mhm.h H=xB0˙
4 mndmgm TMndTMgm
5 4 anim2i SMgmTMndSMgmTMgm
6 eqid BaseT=BaseT
7 6 2 mndidcl TMnd0˙BaseT
8 7 adantl SMgmTMnd0˙BaseT
9 8 adantr SMgmTMndxB0˙BaseT
10 9 3 fmptd SMgmTMndH:BBaseT
11 7 ancli TMndTMnd0˙BaseT
12 11 adantl SMgmTMndTMnd0˙BaseT
13 eqid +T=+T
14 6 13 2 mndlid TMnd0˙BaseT0˙+T0˙=0˙
15 12 14 syl SMgmTMnd0˙+T0˙=0˙
16 15 adantr SMgmTMndaBbB0˙+T0˙=0˙
17 3 a1i SMgmTMndaBbBH=xB0˙
18 eqidd SMgmTMndaBbBx=a0˙=0˙
19 simprl SMgmTMndaBbBaB
20 8 adantr SMgmTMndaBbB0˙BaseT
21 17 18 19 20 fvmptd SMgmTMndaBbBHa=0˙
22 eqidd SMgmTMndaBbBx=b0˙=0˙
23 simprr SMgmTMndaBbBbB
24 17 22 23 20 fvmptd SMgmTMndaBbBHb=0˙
25 21 24 oveq12d SMgmTMndaBbBHa+THb=0˙+T0˙
26 eqidd SMgmTMndaBbBx=a+Sb0˙=0˙
27 eqid +S=+S
28 1 27 mgmcl SMgmaBbBa+SbB
29 28 3expb SMgmaBbBa+SbB
30 29 adantlr SMgmTMndaBbBa+SbB
31 17 26 30 20 fvmptd SMgmTMndaBbBHa+Sb=0˙
32 16 25 31 3eqtr4rd SMgmTMndaBbBHa+Sb=Ha+THb
33 32 ralrimivva SMgmTMndaBbBHa+Sb=Ha+THb
34 10 33 jca SMgmTMndH:BBaseTaBbBHa+Sb=Ha+THb
35 1 6 27 13 ismgmhm HSMgmHomTSMgmTMgmH:BBaseTaBbBHa+Sb=Ha+THb
36 5 34 35 sylanbrc SMgmTMndHSMgmHomT