Metamath Proof Explorer


Theorem c0snmhm

Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrrhm.b B = Base T
zrrhm.0 0 ˙ = 0 S
zrrhm.h H = x B 0 ˙
c0snmhm.z Z = 0 T
Assertion c0snmhm S Mnd T Mnd B = Z H T MndHom S

Proof

Step Hyp Ref Expression
1 zrrhm.b B = Base T
2 zrrhm.0 0 ˙ = 0 S
3 zrrhm.h H = x B 0 ˙
4 c0snmhm.z Z = 0 T
5 pm3.22 S Mnd T Mnd T Mnd S Mnd
6 5 3adant3 S Mnd T Mnd B = Z T Mnd S Mnd
7 simp1 S Mnd T Mnd B = Z S Mnd
8 mndmgm T Mnd T Mgm
9 8 3ad2ant2 S Mnd T Mnd B = Z T Mgm
10 fveq2 B = Z B = Z
11 4 fvexi Z V
12 hashsng Z V Z = 1
13 11 12 ax-mp Z = 1
14 10 13 eqtrdi B = Z B = 1
15 14 3ad2ant3 S Mnd T Mnd B = Z B = 1
16 1 2 3 c0snmgmhm S Mnd T Mgm B = 1 H T MgmHom S
17 7 9 15 16 syl3anc S Mnd T Mnd B = Z H T MgmHom S
18 3 a1i S Mnd T Mnd B = Z H = x B 0 ˙
19 eqidd S Mnd T Mnd B = Z x = Z 0 ˙ = 0 ˙
20 11 snid Z Z
21 eleq2 B = Z Z B Z Z
22 20 21 mpbiri B = Z Z B
23 22 3ad2ant3 S Mnd T Mnd B = Z Z B
24 eqid Base S = Base S
25 24 2 mndidcl S Mnd 0 ˙ Base S
26 25 3ad2ant1 S Mnd T Mnd B = Z 0 ˙ Base S
27 18 19 23 26 fvmptd S Mnd T Mnd B = Z H Z = 0 ˙
28 17 27 jca S Mnd T Mnd B = Z H T MgmHom S H Z = 0 ˙
29 eqid + T = + T
30 eqid + S = + S
31 1 24 29 30 4 2 ismhm0 H T MndHom S T Mnd S Mnd H T MgmHom S H Z = 0 ˙
32 6 28 31 sylanbrc S Mnd T Mnd B = Z H T MndHom S