| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrhm.b |
|
| 2 |
|
zrrhm.0 |
|
| 3 |
|
zrrhm.h |
|
| 4 |
|
mndmgm |
|
| 5 |
4
|
anim1i |
|
| 6 |
5
|
3adant3 |
|
| 7 |
6
|
ancomd |
|
| 8 |
1
|
fvexi |
|
| 9 |
|
hash1snb |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
|
eqid |
|
| 12 |
11 2
|
mndidcl |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
adantr |
|
| 16 |
15 3
|
fmptd |
|
| 17 |
3
|
a1i |
|
| 18 |
|
eqidd |
|
| 19 |
|
vsnid |
|
| 20 |
19
|
a1i |
|
| 21 |
|
eleq2 |
|
| 22 |
20 21
|
mpbird |
|
| 23 |
22
|
adantl |
|
| 24 |
17 18 23 14
|
fvmptd |
|
| 25 |
|
simpr |
|
| 26 |
25 25
|
oveq12d |
|
| 27 |
|
eqid |
|
| 28 |
11 27 2
|
mndlid |
|
| 29 |
12 28
|
mpdan |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simpr |
|
| 37 |
|
eqid |
|
| 38 |
1 37
|
mgmcl |
|
| 39 |
35 36 36 38
|
syl3anc |
|
| 40 |
|
eleq2 |
|
| 41 |
|
elsni |
|
| 42 |
40 41
|
biimtrdi |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
adantr |
|
| 45 |
39 44
|
mpd |
|
| 46 |
23 45
|
mpdan |
|
| 47 |
46
|
fveq2d |
|
| 48 |
47
|
adantr |
|
| 49 |
48 25
|
eqtr2d |
|
| 50 |
26 32 49
|
3eqtrrd |
|
| 51 |
24 50
|
mpdan |
|
| 52 |
|
id |
|
| 53 |
52
|
raleqdv |
|
| 54 |
52 53
|
raleqbidv |
|
| 55 |
54
|
adantl |
|
| 56 |
|
fvoveq1 |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
oveq1d |
|
| 59 |
56 58
|
eqeq12d |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
fveq2d |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
61 63
|
eqeq12d |
|
| 65 |
59 64
|
2ralsng |
|
| 66 |
65
|
el2v |
|
| 67 |
55 66
|
bitrdi |
|
| 68 |
51 67
|
mpbird |
|
| 69 |
16 68
|
jca |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
exlimdv |
|
| 72 |
10 71
|
biimtrid |
|
| 73 |
72
|
3impia |
|
| 74 |
1 11 37 27
|
ismgmhm |
|
| 75 |
7 73 74
|
sylanbrc |
|