Metamath Proof Explorer


Theorem c0snmgmhm

Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrrhm.b B = Base T
zrrhm.0 0 ˙ = 0 S
zrrhm.h H = x B 0 ˙
Assertion c0snmgmhm S Mnd T Mgm B = 1 H T MgmHom S

Proof

Step Hyp Ref Expression
1 zrrhm.b B = Base T
2 zrrhm.0 0 ˙ = 0 S
3 zrrhm.h H = x B 0 ˙
4 mndmgm S Mnd S Mgm
5 4 anim1i S Mnd T Mgm S Mgm T Mgm
6 5 3adant3 S Mnd T Mgm B = 1 S Mgm T Mgm
7 6 ancomd S Mnd T Mgm B = 1 T Mgm S Mgm
8 1 fvexi B V
9 hash1snb B V B = 1 b B = b
10 8 9 ax-mp B = 1 b B = b
11 eqid Base S = Base S
12 11 2 mndidcl S Mnd 0 ˙ Base S
13 12 adantr S Mnd T Mgm 0 ˙ Base S
14 13 adantr S Mnd T Mgm B = b 0 ˙ Base S
15 14 adantr S Mnd T Mgm B = b x B 0 ˙ Base S
16 15 3 fmptd S Mnd T Mgm B = b H : B Base S
17 3 a1i S Mnd T Mgm B = b H = x B 0 ˙
18 eqidd S Mnd T Mgm B = b x = b 0 ˙ = 0 ˙
19 vsnid b b
20 19 a1i B = b b b
21 eleq2 B = b b B b b
22 20 21 mpbird B = b b B
23 22 adantl S Mnd T Mgm B = b b B
24 17 18 23 14 fvmptd S Mnd T Mgm B = b H b = 0 ˙
25 simpr S Mnd T Mgm B = b H b = 0 ˙ H b = 0 ˙
26 25 25 oveq12d S Mnd T Mgm B = b H b = 0 ˙ H b + S H b = 0 ˙ + S 0 ˙
27 eqid + S = + S
28 11 27 2 mndlid S Mnd 0 ˙ Base S 0 ˙ + S 0 ˙ = 0 ˙
29 12 28 mpdan S Mnd 0 ˙ + S 0 ˙ = 0 ˙
30 29 adantr S Mnd T Mgm 0 ˙ + S 0 ˙ = 0 ˙
31 30 adantr S Mnd T Mgm B = b 0 ˙ + S 0 ˙ = 0 ˙
32 31 adantr S Mnd T Mgm B = b H b = 0 ˙ 0 ˙ + S 0 ˙ = 0 ˙
33 simpr S Mnd T Mgm T Mgm
34 33 adantr S Mnd T Mgm B = b T Mgm
35 34 adantr S Mnd T Mgm B = b b B T Mgm
36 simpr S Mnd T Mgm B = b b B b B
37 eqid + T = + T
38 1 37 mgmcl T Mgm b B b B b + T b B
39 35 36 36 38 syl3anc S Mnd T Mgm B = b b B b + T b B
40 eleq2 B = b b + T b B b + T b b
41 elsni b + T b b b + T b = b
42 40 41 syl6bi B = b b + T b B b + T b = b
43 42 adantl S Mnd T Mgm B = b b + T b B b + T b = b
44 43 adantr S Mnd T Mgm B = b b B b + T b B b + T b = b
45 39 44 mpd S Mnd T Mgm B = b b B b + T b = b
46 23 45 mpdan S Mnd T Mgm B = b b + T b = b
47 46 fveq2d S Mnd T Mgm B = b H b + T b = H b
48 47 adantr S Mnd T Mgm B = b H b = 0 ˙ H b + T b = H b
49 48 25 eqtr2d S Mnd T Mgm B = b H b = 0 ˙ 0 ˙ = H b + T b
50 26 32 49 3eqtrrd S Mnd T Mgm B = b H b = 0 ˙ H b + T b = H b + S H b
51 24 50 mpdan S Mnd T Mgm B = b H b + T b = H b + S H b
52 id B = b B = b
53 52 raleqdv B = b c B H a + T c = H a + S H c c b H a + T c = H a + S H c
54 52 53 raleqbidv B = b a B c B H a + T c = H a + S H c a b c b H a + T c = H a + S H c
55 54 adantl S Mnd T Mgm B = b a B c B H a + T c = H a + S H c a b c b H a + T c = H a + S H c
56 fvoveq1 a = b H a + T c = H b + T c
57 fveq2 a = b H a = H b
58 57 oveq1d a = b H a + S H c = H b + S H c
59 56 58 eqeq12d a = b H a + T c = H a + S H c H b + T c = H b + S H c
60 oveq2 c = b b + T c = b + T b
61 60 fveq2d c = b H b + T c = H b + T b
62 fveq2 c = b H c = H b
63 62 oveq2d c = b H b + S H c = H b + S H b
64 61 63 eqeq12d c = b H b + T c = H b + S H c H b + T b = H b + S H b
65 59 64 2ralsng b V b V a b c b H a + T c = H a + S H c H b + T b = H b + S H b
66 65 el2v a b c b H a + T c = H a + S H c H b + T b = H b + S H b
67 55 66 bitrdi S Mnd T Mgm B = b a B c B H a + T c = H a + S H c H b + T b = H b + S H b
68 51 67 mpbird S Mnd T Mgm B = b a B c B H a + T c = H a + S H c
69 16 68 jca S Mnd T Mgm B = b H : B Base S a B c B H a + T c = H a + S H c
70 69 ex S Mnd T Mgm B = b H : B Base S a B c B H a + T c = H a + S H c
71 70 exlimdv S Mnd T Mgm b B = b H : B Base S a B c B H a + T c = H a + S H c
72 10 71 syl5bi S Mnd T Mgm B = 1 H : B Base S a B c B H a + T c = H a + S H c
73 72 3impia S Mnd T Mgm B = 1 H : B Base S a B c B H a + T c = H a + S H c
74 1 11 37 27 ismgmhm H T MgmHom S T Mgm S Mgm H : B Base S a B c B H a + T c = H a + S H c
75 7 73 74 sylanbrc S Mnd T Mgm B = 1 H T MgmHom S