Metamath Proof Explorer


Theorem cantnffval2

Description: An alternate definition of df-cnf which relies on cantnf . (Note that although the use of S seems self-referential, one can use cantnfdm to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
Assertion cantnffval2 φACNFB=OrdIsoTS-1

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 1 2 3 4 cantnf φACNFBIsomT,ESA𝑜B
6 isof1o ACNFBIsomT,ESA𝑜BACNFB:S1-1 ontoA𝑜B
7 f1orel ACNFB:S1-1 ontoA𝑜BRelACNFB
8 5 6 7 3syl φRelACNFB
9 dfrel2 RelACNFBACNFB-1-1=ACNFB
10 8 9 sylib φACNFB-1-1=ACNFB
11 oecl AOnBOnA𝑜BOn
12 2 3 11 syl2anc φA𝑜BOn
13 eloni A𝑜BOnOrdA𝑜B
14 12 13 syl φOrdA𝑜B
15 isocnv ACNFBIsomT,ESA𝑜BACNFB-1IsomE,TA𝑜BS
16 5 15 syl φACNFB-1IsomE,TA𝑜BS
17 1 2 3 4 oemapwe φTWeSdomOrdIsoTS=A𝑜B
18 17 simpld φTWeS
19 ovex ACNFBV
20 19 dmex domACNFBV
21 1 20 eqeltri SV
22 exse SVTSeS
23 21 22 ax-mp TSeS
24 eqid OrdIsoTS=OrdIsoTS
25 24 oieu TWeSTSeSOrdA𝑜BACNFB-1IsomE,TA𝑜BSA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
26 18 23 25 sylancl φOrdA𝑜BACNFB-1IsomE,TA𝑜BSA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
27 14 16 26 mpbi2and φA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
28 27 simprd φACNFB-1=OrdIsoTS
29 28 cnveqd φACNFB-1-1=OrdIsoTS-1
30 10 29 eqtr3d φACNFB=OrdIsoTS-1