Description: An alternate definition of df-cnf which relies on cantnf . (Note that although the use of S seems self-referential, one can use cantnfdm to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
oemapval.t | |
||
Assertion | cantnffval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | oemapval.t | |
|
5 | 1 2 3 4 | cantnf | |
6 | isof1o | |
|
7 | f1orel | |
|
8 | 5 6 7 | 3syl | |
9 | dfrel2 | |
|
10 | 8 9 | sylib | |
11 | oecl | |
|
12 | 2 3 11 | syl2anc | |
13 | eloni | |
|
14 | 12 13 | syl | |
15 | isocnv | |
|
16 | 5 15 | syl | |
17 | 1 2 3 4 | oemapwe | |
18 | 17 | simpld | |
19 | ovex | |
|
20 | 19 | dmex | |
21 | 1 20 | eqeltri | |
22 | exse | |
|
23 | 21 22 | ax-mp | |
24 | eqid | |
|
25 | 24 | oieu | |
26 | 18 23 25 | sylancl | |
27 | 14 16 26 | mpbi2and | |
28 | 27 | simprd | |
29 | 28 | cnveqd | |
30 | 10 29 | eqtr3d | |