Description: The alternate definition of the cardinal of a set given in cardval2 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | card2on | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon | |
|
2 | vex | |
|
3 | onelss | |
|
4 | 3 | imp | |
5 | ssdomg | |
|
6 | 2 4 5 | mpsyl | |
7 | 1 6 | jca | |
8 | domsdomtr | |
|
9 | 8 | anim2i | |
10 | 9 | anassrs | |
11 | 7 10 | sylan | |
12 | 11 | exp31 | |
13 | 12 | com12 | |
14 | 13 | impd | |
15 | breq1 | |
|
16 | 15 | elrab | |
17 | breq1 | |
|
18 | 17 | elrab | |
19 | 14 16 18 | 3imtr4g | |
20 | 19 | imp | |
21 | 20 | gen2 | |
22 | dftr2 | |
|
23 | 21 22 | mpbir | |
24 | ssrab2 | |
|
25 | ordon | |
|
26 | trssord | |
|
27 | 23 24 25 26 | mp3an | |
28 | hartogs | |
|
29 | sdomdom | |
|
30 | 29 | a1i | |
31 | 30 | ss2rabi | |
32 | ssexg | |
|
33 | 31 32 | mpan | |
34 | elong | |
|
35 | 28 33 34 | 3syl | |
36 | 27 35 | mpbiri | |
37 | 0elon | |
|
38 | eleq1 | |
|
39 | 37 38 | mpbiri | |
40 | df-ne | |
|
41 | rabn0 | |
|
42 | 40 41 | bitr3i | |
43 | relsdom | |
|
44 | 43 | brrelex2i | |
45 | 44 | rexlimivw | |
46 | 42 45 | sylbi | |
47 | 39 46 | nsyl4 | |
48 | 36 47 | pm2.61i | |