Metamath Proof Explorer


Theorem cayleylem2

Description: Lemma for cayley . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayleylem1.x X=BaseG
cayleylem1.p +˙=+G
cayleylem1.u 0˙=0G
cayleylem1.h H=SymGrpX
cayleylem1.s S=BaseH
cayleylem1.f F=gXaXg+˙a
Assertion cayleylem2 GGrpF:X1-1S

Proof

Step Hyp Ref Expression
1 cayleylem1.x X=BaseG
2 cayleylem1.p +˙=+G
3 cayleylem1.u 0˙=0G
4 cayleylem1.h H=SymGrpX
5 cayleylem1.s S=BaseH
6 cayleylem1.f F=gXaXg+˙a
7 fveq1 Fx=0HFx0˙=0H0˙
8 simpr GGrpxXxX
9 1 3 grpidcl GGrp0˙X
10 9 adantr GGrpxX0˙X
11 6 1 grplactval xX0˙XFx0˙=x+˙0˙
12 8 10 11 syl2anc GGrpxXFx0˙=x+˙0˙
13 1 2 3 grprid GGrpxXx+˙0˙=x
14 12 13 eqtrd GGrpxXFx0˙=x
15 1 fvexi XV
16 4 symgid XVIX=0H
17 15 16 ax-mp IX=0H
18 17 fveq1i IX0˙=0H0˙
19 fvresi 0˙XIX0˙=0˙
20 10 19 syl GGrpxXIX0˙=0˙
21 18 20 eqtr3id GGrpxX0H0˙=0˙
22 14 21 eqeq12d GGrpxXFx0˙=0H0˙x=0˙
23 7 22 imbitrid GGrpxXFx=0Hx=0˙
24 23 ralrimiva GGrpxXFx=0Hx=0˙
25 1 2 3 4 5 6 cayleylem1 GGrpFGGrpHomH
26 eqid 0H=0H
27 1 5 3 26 ghmf1 FGGrpHomHF:X1-1SxXFx=0Hx=0˙
28 25 27 syl GGrpF:X1-1SxXFx=0Hx=0˙
29 24 28 mpbird GGrpF:X1-1S