Description: Part of proof of Lemma E in Crawley p. 113. TODO: Reformat as in cdlemg3a - swap consequent equality; make antecedent use df-3an . (Contributed by NM, 13-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme0.l | |
|
cdleme0.j | |
||
cdleme0.m | |
||
cdleme0.a | |
||
cdleme0.h | |
||
cdleme0.u | |
||
Assertion | cdleme0cp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.l | |
|
2 | cdleme0.j | |
|
3 | cdleme0.m | |
|
4 | cdleme0.a | |
|
5 | cdleme0.h | |
|
6 | cdleme0.u | |
|
7 | 6 | oveq2i | |
8 | simpll | |
|
9 | simprll | |
|
10 | hllat | |
|
11 | 10 | ad2antrr | |
12 | eqid | |
|
13 | 12 4 | atbase | |
14 | 9 13 | syl | |
15 | simprr | |
|
16 | 12 4 | atbase | |
17 | 15 16 | syl | |
18 | 12 2 | latjcl | |
19 | 11 14 17 18 | syl3anc | |
20 | 12 5 | lhpbase | |
21 | 20 | ad2antlr | |
22 | 1 2 4 | hlatlej1 | |
23 | 8 9 15 22 | syl3anc | |
24 | 12 1 2 3 4 | atmod3i1 | |
25 | 8 9 19 21 23 24 | syl131anc | |
26 | eqid | |
|
27 | 1 2 26 4 5 | lhpjat2 | |
28 | 27 | adantrr | |
29 | 28 | oveq2d | |
30 | hlol | |
|
31 | 30 | ad2antrr | |
32 | 12 3 26 | olm11 | |
33 | 31 19 32 | syl2anc | |
34 | 25 29 33 | 3eqtrd | |
35 | 7 34 | eqtrid | |