Metamath Proof Explorer


Theorem cdleme3

Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa above, we show that f(r) e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as F e. A /\ -. F .<_ W . Their proof provides no details of our lemmas cdleme3b through cdleme3 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬F˙W

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 eqid P˙R˙W=P˙R˙W
9 1 2 3 4 5 6 7 8 cdleme3g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFU
10 simp1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKLat
12 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA
13 eqid BaseK=BaseK
14 13 4 atbase RARBaseK
15 12 14 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRBaseK
16 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFA
17 13 4 atbase FAFBaseK
18 16 17 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFBaseK
19 13 1 2 latlej2 KLatRBaseKFBaseKF˙R˙F
20 11 15 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙R˙F
21 20 biantrurd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙WF˙R˙FF˙W
22 13 2 4 hlatjcl KHLRAFAR˙FBaseK
23 10 12 16 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙FBaseK
24 simp1r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWH
25 13 5 lhpbase WHWBaseK
26 24 25 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWBaseK
27 13 1 3 latlem12 KLatFBaseKR˙FBaseKWBaseKF˙R˙FF˙WF˙R˙F˙W
28 11 18 23 26 27 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙R˙FF˙WF˙R˙F˙W
29 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHLWH
30 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA
31 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQA
32 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA¬R˙W
33 1 2 3 4 5 6 7 cdleme2 KHLWHPAQARA¬R˙WR˙F˙W=U
34 29 30 31 32 33 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙F˙W=U
35 34 breq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙R˙F˙WF˙U
36 28 35 bitrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙R˙FF˙WF˙U
37 hlatl KHLKAtLat
38 10 37 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKAtLat
39 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA¬P˙W
40 simp3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPQ
41 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
42 29 39 31 40 41 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUA
43 1 4 atcmp KAtLatFAUAF˙UF=U
44 38 16 42 43 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙UF=U
45 21 36 44 3bitrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙WF=U
46 45 necon3bbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬F˙WFU
47 9 46 mpbird KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬F˙W