Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa above, we show that f(r) e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as F e. A /\ -. F .<_ W . Their proof provides no details of our lemmas cdleme3b through cdleme3 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme1.l | |
|
cdleme1.j | |
||
cdleme1.m | |
||
cdleme1.a | |
||
cdleme1.h | |
||
cdleme1.u | |
||
cdleme1.f | |
||
Assertion | cdleme3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.l | |
|
2 | cdleme1.j | |
|
3 | cdleme1.m | |
|
4 | cdleme1.a | |
|
5 | cdleme1.h | |
|
6 | cdleme1.u | |
|
7 | cdleme1.f | |
|
8 | eqid | |
|
9 | 1 2 3 4 5 6 7 8 | cdleme3g | |
10 | simp1l | |
|
11 | 10 | hllatd | |
12 | simp23l | |
|
13 | eqid | |
|
14 | 13 4 | atbase | |
15 | 12 14 | syl | |
16 | 1 2 3 4 5 6 7 | cdleme3fa | |
17 | 13 4 | atbase | |
18 | 16 17 | syl | |
19 | 13 1 2 | latlej2 | |
20 | 11 15 18 19 | syl3anc | |
21 | 20 | biantrurd | |
22 | 13 2 4 | hlatjcl | |
23 | 10 12 16 22 | syl3anc | |
24 | simp1r | |
|
25 | 13 5 | lhpbase | |
26 | 24 25 | syl | |
27 | 13 1 3 | latlem12 | |
28 | 11 18 23 26 27 | syl13anc | |
29 | simp1 | |
|
30 | simp21l | |
|
31 | simp22l | |
|
32 | simp23 | |
|
33 | 1 2 3 4 5 6 7 | cdleme2 | |
34 | 29 30 31 32 33 | syl13anc | |
35 | 34 | breq2d | |
36 | 28 35 | bitrd | |
37 | hlatl | |
|
38 | 10 37 | syl | |
39 | simp21 | |
|
40 | simp3l | |
|
41 | 1 2 3 4 5 6 | lhpat2 | |
42 | 29 39 31 40 41 | syl112anc | |
43 | 1 4 | atcmp | |
44 | 38 16 42 43 | syl3anc | |
45 | 21 36 44 | 3bitrd | |
46 | 45 | necon3bbid | |
47 | 9 46 | mpbird | |