Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
|
2 |
|
cdleme4.j |
|
3 |
|
cdleme4.m |
|
4 |
|
cdleme4.a |
|
5 |
|
cdleme4.h |
|
6 |
|
cdleme4.u |
|
7 |
|
cdleme4.f |
|
8 |
|
cdleme4.g |
|
9 |
|
cdleme7.v |
|
10 |
1 2 3 4 5 6 7 8 9
|
cdleme7a |
|
11 |
|
simp11l |
|
12 |
11
|
hllatd |
|
13 |
|
simp12l |
|
14 |
|
simp13l |
|
15 |
|
eqid |
|
16 |
15 2 4
|
hlatjcl |
|
17 |
11 13 14 16
|
syl3anc |
|
18 |
|
simp11 |
|
19 |
|
simp12 |
|
20 |
|
simp13 |
|
21 |
|
simp2r |
|
22 |
|
simp31 |
|
23 |
|
simp33 |
|
24 |
1 2 3 4 5 6 7
|
cdleme3fa |
|
25 |
18 19 20 21 22 23 24
|
syl132anc |
|
26 |
|
simp2l |
|
27 |
|
simp2rl |
|
28 |
|
simp32 |
|
29 |
1 2 3 4 5 6 7 8 9
|
cdleme7b |
|
30 |
18 26 27 23 28 29
|
syl113anc |
|
31 |
15 2 4
|
hlatjcl |
|
32 |
11 25 30 31
|
syl3anc |
|
33 |
15 1 3
|
latmle2 |
|
34 |
12 17 32 33
|
syl3anc |
|
35 |
10 34
|
eqbrtrid |
|
36 |
1 2 3 4 5 6 7
|
cdleme3 |
|
37 |
18 19 20 21 22 23 36
|
syl132anc |
|
38 |
1 2 3 4 5 6
|
lhpat2 |
|
39 |
18 19 14 22 38
|
syl112anc |
|
40 |
|
simp2 |
|
41 |
|
simp3 |
|
42 |
1 2 3 4 5 6 7 8 9
|
cdleme7c |
|
43 |
18 19 14 40 41 42
|
syl311anc |
|
44 |
1 2 4
|
hlatexch2 |
|
45 |
11 39 25 30 43 44
|
syl131anc |
|
46 |
|
simp11r |
|
47 |
15 5
|
lhpbase |
|
48 |
46 47
|
syl |
|
49 |
15 1 3
|
latmle2 |
|
50 |
12 17 48 49
|
syl3anc |
|
51 |
6 50
|
eqbrtrid |
|
52 |
|
simp2ll |
|
53 |
15 2 4
|
hlatjcl |
|
54 |
11 52 27 53
|
syl3anc |
|
55 |
15 1 3
|
latmle2 |
|
56 |
12 54 48 55
|
syl3anc |
|
57 |
9 56
|
eqbrtrid |
|
58 |
15 4
|
atbase |
|
59 |
39 58
|
syl |
|
60 |
15 4
|
atbase |
|
61 |
30 60
|
syl |
|
62 |
15 1 2
|
latjle12 |
|
63 |
12 59 61 48 62
|
syl13anc |
|
64 |
51 57 63
|
mpbi2and |
|
65 |
15 4
|
atbase |
|
66 |
25 65
|
syl |
|
67 |
15 2 4
|
hlatjcl |
|
68 |
11 39 30 67
|
syl3anc |
|
69 |
15 1
|
lattr |
|
70 |
12 66 68 48 69
|
syl13anc |
|
71 |
64 70
|
mpan2d |
|
72 |
45 71
|
syld |
|
73 |
37 72
|
mtod |
|
74 |
|
nbrne2 |
|
75 |
35 73 74
|
syl2anc |
|