Metamath Proof Explorer


Theorem cdlemg12g

Description: TODO: FIX COMMENT. TODO: Combine with cdlemg12f . (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg12g KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ=P˙FGP˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHL
9 hlop KHLKOP
10 8 9 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKOP
11 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKLat
12 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPA
13 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHLWH
14 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFT
15 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QGT
16 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
17 13 14 15 12 16 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGPA
18 eqid BaseK=BaseK
19 18 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
20 8 12 17 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGPBaseK
21 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQA
22 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
23 13 14 15 21 22 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGQA
24 18 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
25 8 21 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQ˙FGQBaseK
26 18 3 latmcl KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQBaseK
27 11 20 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQBaseK
28 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPA¬P˙W
29 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQA¬Q˙W
30 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGP˙FGQP˙Q
31 1 2 3 4 5 6 cdlemg11a KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPP
32 31 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QPFGP
33 13 28 29 14 15 30 32 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPFGP
34 1 2 3 4 5 lhpat KHLWHPA¬P˙WFGPAPFGPP˙FGP˙WA
35 13 28 17 33 34 syl112anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙WA
36 2 4 hlatjcom KHLPAFGPAP˙FGP=FGP˙P
37 8 12 17 36 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP=FGP˙P
38 2 4 hlatjcom KHLQAFGQAQ˙FGQ=FGQ˙Q
39 8 21 23 38 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQ˙FGQ=FGQ˙Q
40 37 39 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ=FGP˙P˙FGQ˙Q
41 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHLWHPA¬P˙WQA¬Q˙W
42 simp2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFTGTPQ
43 simp31l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RF˙P˙Q
44 simp31r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RG˙P˙Q
45 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QRFRG
46 eqid 0.K=0.K
47 1 2 3 4 5 6 7 46 cdlemg12e KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q0.K
48 41 42 43 44 45 47 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGP˙P˙FGQ˙Q0.K
49 40 48 eqnetrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ0.K
50 1 2 3 4 5 6 7 cdlemg12f KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙P˙FGP˙W
51 18 1 46 4 leat2 KOPP˙FGP˙Q˙FGQBaseKP˙FGP˙WAP˙FGP˙Q˙FGQ0.KP˙FGP˙Q˙FGQ˙P˙FGP˙WP˙FGP˙Q˙FGQ=P˙FGP˙W
52 10 27 35 49 50 51 syl32anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ=P˙FGP˙W