| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp11l |  | 
						
							| 9 |  | hlop |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 8 | hllatd |  | 
						
							| 12 |  | simp12l |  | 
						
							| 13 |  | simp11 |  | 
						
							| 14 |  | simp21 |  | 
						
							| 15 |  | simp22 |  | 
						
							| 16 | 1 4 5 6 | ltrncoat |  | 
						
							| 17 | 13 14 15 12 16 | syl121anc |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 2 4 | hlatjcl |  | 
						
							| 20 | 8 12 17 19 | syl3anc |  | 
						
							| 21 |  | simp13l |  | 
						
							| 22 | 1 4 5 6 | ltrncoat |  | 
						
							| 23 | 13 14 15 21 22 | syl121anc |  | 
						
							| 24 | 18 2 4 | hlatjcl |  | 
						
							| 25 | 8 21 23 24 | syl3anc |  | 
						
							| 26 | 18 3 | latmcl |  | 
						
							| 27 | 11 20 25 26 | syl3anc |  | 
						
							| 28 |  | simp12 |  | 
						
							| 29 |  | simp13 |  | 
						
							| 30 |  | simp33 |  | 
						
							| 31 | 1 2 3 4 5 6 | cdlemg11a |  | 
						
							| 32 | 31 | necomd |  | 
						
							| 33 | 13 28 29 14 15 30 32 | syl123anc |  | 
						
							| 34 | 1 2 3 4 5 | lhpat |  | 
						
							| 35 | 13 28 17 33 34 | syl112anc |  | 
						
							| 36 | 2 4 | hlatjcom |  | 
						
							| 37 | 8 12 17 36 | syl3anc |  | 
						
							| 38 | 2 4 | hlatjcom |  | 
						
							| 39 | 8 21 23 38 | syl3anc |  | 
						
							| 40 | 37 39 | oveq12d |  | 
						
							| 41 |  | simp1 |  | 
						
							| 42 |  | simp2 |  | 
						
							| 43 |  | simp31l |  | 
						
							| 44 |  | simp31r |  | 
						
							| 45 |  | simp32 |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 1 2 3 4 5 6 7 46 | cdlemg12e |  | 
						
							| 48 | 41 42 43 44 45 47 | syl113anc |  | 
						
							| 49 | 40 48 | eqnetrd |  | 
						
							| 50 | 1 2 3 4 5 6 7 | cdlemg12f |  | 
						
							| 51 | 18 1 46 4 | leat2 |  | 
						
							| 52 | 10 27 35 49 50 51 | syl32anc |  |