Metamath Proof Explorer


Theorem cdlemg13

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q K HL W H
9 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F T
10 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G T
11 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P A ¬ P ˙ W
12 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
13 8 10 11 12 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P A ¬ G P ˙ W
14 1 2 3 4 5 6 7 trlval2 K HL W H F T G P A ¬ G P ˙ W R F = G P ˙ F G P ˙ W
15 8 9 13 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R F = G P ˙ F G P ˙ W
16 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q Q A ¬ Q ˙ W
17 1 4 5 6 ltrnel K HL W H G T Q A ¬ Q ˙ W G Q A ¬ G Q ˙ W
18 8 10 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G Q A ¬ G Q ˙ W
19 1 2 3 4 5 6 7 trlval2 K HL W H F T G Q A ¬ G Q ˙ W R F = G Q ˙ F G Q ˙ W
20 8 9 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R F = G Q ˙ F G Q ˙ W
21 15 20 eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ F G P ˙ W = G Q ˙ F G Q ˙ W
22 1 2 3 4 5 6 7 cdlemg13a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P = G P ˙ F G P
23 22 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = G P ˙ F G P ˙ W
24 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F T G T
25 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F P P
26 1 4 5 6 ltrnatneq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P P F Q Q
27 8 9 11 16 25 26 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F Q Q
28 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R F = R G
29 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q
30 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q K HL
31 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P A
32 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
33 8 24 31 32 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P A
34 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q Q A
35 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
36 8 24 34 35 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G Q A
37 2 4 hlatjcom K HL F G P A F G Q A F G P ˙ F G Q = F G Q ˙ F G P
38 30 33 36 37 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P ˙ F G Q = F G Q ˙ F G P
39 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
40 30 31 34 39 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ Q = Q ˙ P
41 29 38 40 3netr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G Q ˙ F G P Q ˙ P
42 1 2 3 4 5 6 7 cdlemg13a K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T F Q Q R F = R G F G Q ˙ F G P Q ˙ P Q ˙ F G Q = G Q ˙ F G Q
43 8 16 11 24 27 28 41 42 syl313anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q Q ˙ F G Q = G Q ˙ F G Q
44 43 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q Q ˙ F G Q ˙ W = G Q ˙ F G Q ˙ W
45 21 23 44 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ W = Q ˙ F G Q ˙ W