Metamath Proof Explorer


Theorem cdlemg18c

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg18b.u U=P˙Q˙W
Assertion cdlemg18c KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙FQ˙Q˙FPA

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg18b.u U=P˙Q˙W
9 simp1l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QKHL
10 simp21l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QPA
11 simp1r KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QWH
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QPA¬P˙W
13 simp22l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQA
14 simp31 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QPQ
15 1 2 3 4 5 8 cdleme0a KHLWHPA¬P˙WQAPQUA
16 9 11 12 13 14 15 syl212anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QUA
17 simp1 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QKHLWH
18 simp23 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFT
19 1 4 5 6 ltrnat KHLWHFTQAFQA
20 17 18 13 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQA
21 1 4 5 6 ltrnat KHLWHFTPAFPA
22 17 18 10 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFPA
23 1 2 3 4 5 6 7 8 cdlemg18b KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙Q¬P˙U˙FQ
24 simp32 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFPQ
25 24 necomd KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQFP
26 23 25 jca KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙Q¬P˙U˙FQQFP
27 simp33 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQ˙FPP˙Q
28 1 2 3 4 5 6 7 cdlemg18a KHLWHPAQAFTPQFQ˙FPP˙QP˙FQQ˙FP
29 17 10 13 18 14 27 28 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙FQQ˙FP
30 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
31 9 10 13 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQ˙P˙Q
32 1 2 3 4 5 8 cdleme0cp KHLWHPA¬P˙WQAP˙U=P˙Q
33 9 11 12 13 32 syl22anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U=P˙Q
34 31 33 breqtrrd KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQ˙P˙U
35 1 2 4 hlatlej2 KHLFQAFPAFP˙FQ˙FP
36 9 20 22 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFP˙FQ˙FP
37 simp22 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQA¬Q˙W
38 5 6 1 2 4 3 8 cdlemg2kq KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FQ˙U
39 17 12 37 18 38 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFP˙FQ=FQ˙U
40 2 4 hlatjcom KHLFPAFQAFP˙FQ=FQ˙FP
41 9 22 20 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFP˙FQ=FQ˙FP
42 2 4 hlatjcom KHLFQAUAFQ˙U=U˙FQ
43 9 20 16 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQ˙U=U˙FQ
44 39 41 43 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQ˙FP=U˙FQ
45 36 44 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFP˙U˙FQ
46 34 45 jca KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QQ˙P˙UFP˙U˙FQ
47 1 2 3 4 ps-2c KHLPAUAFQAQAFPA¬P˙U˙FQQFPP˙FQQ˙FPQ˙P˙UFP˙U˙FQP˙FQ˙Q˙FPA
48 9 10 16 20 13 22 26 29 46 47 syl333anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙FQ˙Q˙FPA