Metamath Proof Explorer


Theorem cdlemg1cex

Description: Any translation is one of our F s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf ? (Contributed by NM, 17-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l ˙=K
cdlemg1c.a A=AtomsK
cdlemg1c.h H=LHypK
cdlemg1c.t T=LTrnKW
Assertion cdlemg1cex KHLWHFTpAqA¬p˙W¬q˙WF=ιfT|fp=q

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙=K
2 cdlemg1c.a A=AtomsK
3 cdlemg1c.h H=LHypK
4 cdlemg1c.t T=LTrnKW
5 1 2 3 4 ltrnel KHLWHFTpA¬p˙WFpA¬Fp˙W
6 5 3expa KHLWHFTpA¬p˙WFpA¬Fp˙W
7 6 simpld KHLWHFTpA¬p˙WFpA
8 simprr KHLWHFTpA¬p˙W¬p˙W
9 6 simprd KHLWHFTpA¬p˙W¬Fp˙W
10 simpll KHLWHFTpA¬p˙WKHLWH
11 simpr KHLWHFTpA¬p˙WpA¬p˙W
12 simplr KHLWHFTpA¬p˙WFT
13 1 2 3 4 cdlemeiota KHLWHpA¬p˙WFTF=ιfT|fp=Fp
14 10 11 12 13 syl3anc KHLWHFTpA¬p˙WF=ιfT|fp=Fp
15 breq1 q=Fpq˙WFp˙W
16 15 notbid q=Fp¬q˙W¬Fp˙W
17 eqeq2 q=Fpfp=qfp=Fp
18 17 riotabidv q=FpιfT|fp=q=ιfT|fp=Fp
19 18 eqeq2d q=FpF=ιfT|fp=qF=ιfT|fp=Fp
20 16 19 3anbi23d q=Fp¬p˙W¬q˙WF=ιfT|fp=q¬p˙W¬Fp˙WF=ιfT|fp=Fp
21 20 rspcev FpA¬p˙W¬Fp˙WF=ιfT|fp=FpqA¬p˙W¬q˙WF=ιfT|fp=q
22 7 8 9 14 21 syl13anc KHLWHFTpA¬p˙WqA¬p˙W¬q˙WF=ιfT|fp=q
23 1 2 3 lhpexnle KHLWHpA¬p˙W
24 23 adantr KHLWHFTpA¬p˙W
25 22 24 reximddv KHLWHFTpAqA¬p˙W¬q˙WF=ιfT|fp=q
26 25 ex KHLWHFTpAqA¬p˙W¬q˙WF=ιfT|fp=q
27 simp1 KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qKHLWH
28 simp2l KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qpA
29 simp31 KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=q¬p˙W
30 28 29 jca KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qpA¬p˙W
31 simp2r KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qqA
32 simp32 KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=q¬q˙W
33 31 32 jca KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qqA¬q˙W
34 simp33 KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qF=ιfT|fp=q
35 1 2 3 4 cdlemg1ci2 KHLWHpA¬p˙WqA¬q˙WF=ιfT|fp=qFT
36 27 30 33 34 35 syl31anc KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qFT
37 36 3exp KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qFT
38 37 rexlimdvv KHLWHpAqA¬p˙W¬q˙WF=ιfT|fp=qFT
39 26 38 impbid KHLWHFTpAqA¬p˙W¬q˙WF=ιfT|fp=q