Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp1 |
|
9 |
|
simp21r |
|
10 |
|
simp21l |
|
11 |
9 10
|
jca |
|
12 |
|
simp22 |
|
13 |
|
simp23 |
|
14 |
|
simp31 |
|
15 |
|
simp33 |
|
16 |
1 2 3 4 5 6 7
|
cdlemg17j |
|
17 |
8 9 10 12 13 14 15 16
|
syl133anc |
|
18 |
|
simp11 |
|
19 |
|
simp13 |
|
20 |
|
simp12 |
|
21 |
12
|
necomd |
|
22 |
1 4 5 6
|
ltrnatneq |
|
23 |
18 10 20 19 13 22
|
syl131anc |
|
24 |
|
simp11l |
|
25 |
|
simp12l |
|
26 |
|
simp13l |
|
27 |
2 4
|
hlatjcom |
|
28 |
24 25 26 27
|
syl3anc |
|
29 |
14 28
|
breqtrd |
|
30 |
|
eqcom |
|
31 |
30
|
anbi2i |
|
32 |
31
|
rexbii |
|
33 |
15 32
|
sylnib |
|
34 |
1 2 3 4 5 6 7
|
cdlemg17j |
|
35 |
18 19 20 9 10 21 23 29 33 34
|
syl333anc |
|
36 |
17 35
|
oveq12d |
|
37 |
|
simp32 |
|
38 |
36 37
|
eqnetrrd |
|
39 |
1 2 3 4 5 6 7
|
cdlemg19 |
|
40 |
8 11 12 13 14 38 15 39
|
syl133anc |
|
41 |
17
|
oveq2d |
|
42 |
41
|
oveq1d |
|
43 |
35
|
oveq2d |
|
44 |
43
|
oveq1d |
|
45 |
40 42 44
|
3eqtr4d |
|