Metamath Proof Explorer


Theorem cdlemg21

Description: Version of cdlemg19 with ( RF ) .<_ ( P .\/ Q ) instead of ( RG ) .<_ ( P .\/ Q ) as a condition. (Contributed by NM, 23-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
9 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
10 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F T
11 9 10 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T F T
12 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
13 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P
14 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R F ˙ P ˙ Q
15 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
16 1 2 3 4 5 6 7 cdlemg17j K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T F T P Q F P P R F ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = G F P
17 8 9 10 12 13 14 15 16 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = G F P
18 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
19 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
20 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
21 12 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q P
22 1 4 5 6 ltrnatneq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P P F Q Q
23 18 10 20 19 13 22 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F Q Q
24 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
25 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A
26 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
27 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
28 24 25 26 27 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ Q = Q ˙ P
29 14 28 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R F ˙ Q ˙ P
30 eqcom P ˙ r = Q ˙ r Q ˙ r = P ˙ r
31 30 anbi2i ¬ r ˙ W P ˙ r = Q ˙ r ¬ r ˙ W Q ˙ r = P ˙ r
32 31 rexbii r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W Q ˙ r = P ˙ r
33 15 32 sylnib K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
34 1 2 3 4 5 6 7 cdlemg17j K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W G T F T Q P F Q Q R F ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r F G Q = G F Q
35 18 19 20 9 10 21 23 29 33 34 syl333anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q = G F Q
36 17 35 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q = G F P ˙ G F Q
37 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q P ˙ Q
38 36 37 eqnetrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F P ˙ G F Q P ˙ Q
39 1 2 3 4 5 6 7 cdlemg19 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T F T P Q F P P R F ˙ P ˙ Q G F P ˙ G F Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ G F P ˙ W = Q ˙ G F Q ˙ W
40 8 11 12 13 14 38 15 39 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ G F P ˙ W = Q ˙ G F Q ˙ W
41 17 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P = P ˙ G F P
42 41 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = P ˙ G F P ˙ W
43 35 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q = Q ˙ G F Q
44 43 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q ˙ W = Q ˙ G F Q ˙ W
45 40 42 44 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W