Description: Version of cdlemg19 with ( RF ) .<_ ( P .\/ Q ) instead of ( RG ) .<_ ( P .\/ Q ) as a condition. (Contributed by NM, 23-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg12.l | |
|
cdlemg12.j | |
||
cdlemg12.m | |
||
cdlemg12.a | |
||
cdlemg12.h | |
||
cdlemg12.t | |
||
cdlemg12b.r | |
||
Assertion | cdlemg21 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | |
|
2 | cdlemg12.j | |
|
3 | cdlemg12.m | |
|
4 | cdlemg12.a | |
|
5 | cdlemg12.h | |
|
6 | cdlemg12.t | |
|
7 | cdlemg12b.r | |
|
8 | simp1 | |
|
9 | simp21r | |
|
10 | simp21l | |
|
11 | 9 10 | jca | |
12 | simp22 | |
|
13 | simp23 | |
|
14 | simp31 | |
|
15 | simp33 | |
|
16 | 1 2 3 4 5 6 7 | cdlemg17j | |
17 | 8 9 10 12 13 14 15 16 | syl133anc | |
18 | simp11 | |
|
19 | simp13 | |
|
20 | simp12 | |
|
21 | 12 | necomd | |
22 | 1 4 5 6 | ltrnatneq | |
23 | 18 10 20 19 13 22 | syl131anc | |
24 | simp11l | |
|
25 | simp12l | |
|
26 | simp13l | |
|
27 | 2 4 | hlatjcom | |
28 | 24 25 26 27 | syl3anc | |
29 | 14 28 | breqtrd | |
30 | eqcom | |
|
31 | 30 | anbi2i | |
32 | 31 | rexbii | |
33 | 15 32 | sylnib | |
34 | 1 2 3 4 5 6 7 | cdlemg17j | |
35 | 18 19 20 9 10 21 23 29 33 34 | syl333anc | |
36 | 17 35 | oveq12d | |
37 | simp32 | |
|
38 | 36 37 | eqnetrrd | |
39 | 1 2 3 4 5 6 7 | cdlemg19 | |
40 | 8 11 12 13 14 38 15 39 | syl133anc | |
41 | 17 | oveq2d | |
42 | 41 | oveq1d | |
43 | 35 | oveq2d | |
44 | 43 | oveq1d | |
45 | 40 42 44 | 3eqtr4d | |