Metamath Proof Explorer


Theorem cdlemg21

Description: Version of cdlemg19 with ( RF ) .<_ ( P .\/ Q ) instead of ( RG ) .<_ ( P .\/ Q ) as a condition. (Contributed by NM, 23-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
9 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGT
10 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFT
11 9 10 jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGTFT
12 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPQ
13 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFPP
14 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙Q
15 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
16 1 2 3 4 5 6 7 cdlemg17j KHLWHPA¬P˙WQA¬Q˙WGTFTPQFPPRF˙P˙Q¬rA¬r˙WP˙r=Q˙rFGP=GFP
17 8 9 10 12 13 14 15 16 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP=GFP
18 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
19 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
20 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
21 12 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQP
22 1 4 5 6 ltrnatneq KHLWHFTPA¬P˙WQA¬Q˙WFPPFQQ
23 18 10 20 19 13 22 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFQQ
24 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHL
25 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA
26 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA
27 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
28 24 25 26 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙Q=Q˙P
29 14 28 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙Q˙P
30 eqcom P˙r=Q˙rQ˙r=P˙r
31 30 anbi2i ¬r˙WP˙r=Q˙r¬r˙WQ˙r=P˙r
32 31 rexbii rA¬r˙WP˙r=Q˙rrA¬r˙WQ˙r=P˙r
33 15 32 sylnib KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WQ˙r=P˙r
34 1 2 3 4 5 6 7 cdlemg17j KHLWHQA¬Q˙WPA¬P˙WGTFTQPFQQRF˙Q˙P¬rA¬r˙WQ˙r=P˙rFGQ=GFQ
35 18 19 20 9 10 21 23 29 33 34 syl333anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQ=GFQ
36 17 35 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=GFP˙GFQ
37 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙Q
38 36 37 eqnetrrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGFP˙GFQP˙Q
39 1 2 3 4 5 6 7 cdlemg19 KHLWHPA¬P˙WQA¬Q˙WGTFTPQFPPRF˙P˙QGFP˙GFQP˙Q¬rA¬r˙WP˙r=Q˙rP˙GFP˙W=Q˙GFQ˙W
40 8 11 12 13 14 38 15 39 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙GFP˙W=Q˙GFQ˙W
41 17 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP=P˙GFP
42 41 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=P˙GFP˙W
43 35 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQ=Q˙GFQ
44 43 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQ˙W=Q˙GFQ˙W
45 40 42 44 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W