Metamath Proof Explorer


Theorem cdlemk36

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B=BaseK
cdlemk4.l ˙=K
cdlemk4.j ˙=joinK
cdlemk4.m ˙=meetK
cdlemk4.a A=AtomsK
cdlemk4.h H=LHypK
cdlemk4.t T=LTrnKW
cdlemk4.r R=trLKW
cdlemk4.z Z=P˙Rb˙NP˙RbF-1
cdlemk4.y Y=P˙RG˙Z˙RGb-1
cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
Assertion cdlemk36 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y

Proof

Step Hyp Ref Expression
1 cdlemk4.b B=BaseK
2 cdlemk4.l ˙=K
3 cdlemk4.j ˙=joinK
4 cdlemk4.m ˙=meetK
5 cdlemk4.a A=AtomsK
6 cdlemk4.h H=LHypK
7 cdlemk4.t T=LTrnKW
8 cdlemk4.r R=trLKW
9 cdlemk4.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk4.y Y=P˙RG˙Z˙RGb-1
11 cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
12 11 eqcomi ιzT|bTbIBRbRFRbRGzP=Y=X
13 simpl1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKHLWH
14 simpl2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNFTFIB
15 simpl3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGTGIB
16 simpr1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNNT
17 simpr2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNPA¬P˙W
18 simpr3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRF=RN
19 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXT
20 13 14 15 16 17 18 19 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXT
21 11 20 eqeltrrid KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNιzT|bTbIBRbRFRbRGzP=YT
22 7 fvexi TV
23 22 riotaclbBAD ∃!zTbTbIBRbRFRbRGzP=YιzT|bTbIBRbRFRbRGzP=YT
24 21 23 sylibr KHLWHFTFIBGTGIBNTPA¬P˙WRF=RN∃!zTbTbIBRbRFRbRGzP=Y
25 nfriota1 _zιzT|bTbIBRbRFRbRGzP=Y
26 11 25 nfcxfr _zX
27 nfcv _zT
28 nfv zbIBRbRFRbRG
29 nfcv _zP
30 26 29 nffv _zXP
31 30 nfeq1 zXP=Y
32 28 31 nfim zbIBRbRFRbRGXP=Y
33 27 32 nfralw zbTbIBRbRFRbRGXP=Y
34 nfra1 bbTbIBRbRFRbRGzP=Y
35 nfcv _bT
36 34 35 nfriota _bιzT|bTbIBRbRFRbRGzP=Y
37 11 36 nfcxfr _bX
38 37 nfeq2 bz=X
39 fveq1 z=XzP=XP
40 39 eqeq1d z=XzP=YXP=Y
41 40 imbi2d z=XbIBRbRFRbRGzP=YbIBRbRFRbRGXP=Y
42 38 41 ralbid z=XbTbIBRbRFRbRGzP=YbTbIBRbRFRbRGXP=Y
43 26 33 42 riota2f XT∃!zTbTbIBRbRFRbRGzP=YbTbIBRbRFRbRGXP=YιzT|bTbIBRbRFRbRGzP=Y=X
44 20 24 43 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=YιzT|bTbIBRbRFRbRGzP=Y=X
45 12 44 mpbiri KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y
46 rsp bTbIBRbRFRbRGXP=YbTbIBRbRFRbRGXP=Y
47 45 46 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y
48 47 impd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y
49 48 3impia KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y