Metamath Proof Explorer


Theorem cdlemk39s-id

Description: Substitution version of cdlemk39 with non-identity requirement on G removed. TODO: Can any commonality with cdlemk35s be exploited? (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk39s-id KHLWHFTFIBGTNTPA¬P˙WRF=RNRG/gX˙RG

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simpl1 KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBKHLWH
13 simp21l KHLWHFTFIBGTNTPA¬P˙WRF=RNFT
14 simp23 KHLWHFTFIBGTNTPA¬P˙WRF=RNNT
15 simp3r KHLWHFTFIBGTNTPA¬P˙WRF=RNRF=RN
16 13 14 15 3jca KHLWHFTFIBGTNTPA¬P˙WRF=RNFTNTRF=RN
17 16 adantr KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBFTNTRF=RN
18 simpl3l KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBPA¬P˙W
19 simpr KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBG=IB
20 1 2 3 4 5 6 7 8 9 10 11 cdlemkid KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=IB
21 12 17 18 19 20 syl112anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBG/gX=IB
22 21 fveq2d KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBRG/gX=RIB
23 simpl1l KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBKHL
24 simpl1r KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBWH
25 eqid 0.K=0.K
26 1 25 6 8 trlid0 KHLWHRIB=0.K
27 23 24 26 syl2anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBRIB=0.K
28 22 27 eqtrd KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBRG/gX=0.K
29 hlop KHLKOP
30 23 29 syl KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBKOP
31 simpl22 KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBGT
32 1 6 7 8 trlcl KHLWHGTRGB
33 12 31 32 syl2anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBRGB
34 1 2 25 op0le KOPRGB0.K˙RG
35 30 33 34 syl2anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IB0.K˙RG
36 28 35 eqbrtrd KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBRG/gX˙RG
37 simpl1 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBKHLWH
38 simpl21 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBFTFIB
39 simpl22 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGT
40 simpr KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGIB
41 39 40 jca KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGTGIB
42 simpl23 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBNT
43 simpl3 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBPA¬P˙WRF=RN
44 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRG/gX˙RG
45 37 38 41 42 43 44 syl131anc KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBRG/gX˙RG
46 36 45 pm2.61dane KHLWHFTFIBGTNTPA¬P˙WRF=RNRG/gX˙RG