Metamath Proof Explorer


Theorem cdlemk39s

Description: Substitution version of cdlemk39 . TODO: Can any commonality with cdlemk35s be exploited? (Contributed by NM, 23-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk39s K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R G / g X ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk39 K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N R X ˙ R g
14 13 sbcth G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N R X ˙ R g
15 sbcimg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N R X ˙ R g [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N [˙G / g]˙ R X ˙ R g
16 14 15 mpbid G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N [˙G / g]˙ R X ˙ R g
17 eleq1 g = G g T G T
18 neeq1 g = G g I B G I B
19 17 18 anbi12d g = G g T g I B G T G I B
20 19 3anbi2d g = G F T F I B g T g I B N T F T F I B G T G I B N T
21 20 3anbi2d g = G K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N
22 21 sbcieg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N
23 sbcbr12g G T [˙G / g]˙ R X ˙ R g G / g R X ˙ G / g R g
24 csbfv2g G T G / g R X = R G / g X
25 csbfv G / g R g = R G
26 25 a1i G T G / g R g = R G
27 24 26 breq12d G T G / g R X ˙ G / g R g R G / g X ˙ R G
28 23 27 bitrd G T [˙G / g]˙ R X ˙ R g R G / g X ˙ R G
29 16 22 28 3imtr3d G T K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R G / g X ˙ R G
30 12 29 mpcom K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R G / g X ˙ R G