Description: Lemma for cdlemk53 . (Contributed by NM, 26-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
Assertion | cdlemk53b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | simp1l | |
|
13 | simp211 | |
|
14 | simp212 | |
|
15 | 13 14 | jca | |
16 | simp31 | |
|
17 | simp213 | |
|
18 | simp23 | |
|
19 | simp1r | |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk35s-id | |
21 | 12 15 16 17 18 19 20 | syl132anc | |
22 | 1 6 7 | ltrn1o | |
23 | 12 21 22 | syl2anc | |
24 | 23 | adantr | |
25 | f1of | |
|
26 | fcoi2 | |
|
27 | 24 25 26 | 3syl | |
28 | simpl1l | |
|
29 | 13 17 19 | 3jca | |
30 | 29 | adantr | |
31 | simpl23 | |
|
32 | simpr | |
|
33 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemkid | |
34 | 28 30 31 32 33 | syl112anc | |
35 | 34 | coeq1d | |
36 | 32 | coeq1d | |
37 | simpl31 | |
|
38 | 1 6 7 | ltrn1o | |
39 | 28 37 38 | syl2anc | |
40 | f1of | |
|
41 | fcoi2 | |
|
42 | 39 40 41 | 3syl | |
43 | 36 42 | eqtrd | |
44 | 43 | csbeq1d | |
45 | 27 35 44 | 3eqtr4rd | |
46 | simpl1l | |
|
47 | 15 | adantr | |
48 | simpl22 | |
|
49 | simpr | |
|
50 | 48 49 | jca | |
51 | 17 | adantr | |
52 | simpl23 | |
|
53 | simpl1r | |
|
54 | simpl3 | |
|
55 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk53a | |
56 | 46 47 50 51 52 53 54 55 | syl331anc | |
57 | 45 56 | pm2.61dane | |