Metamath Proof Explorer


Theorem cdlemk54

Description: Part of proof of Lemma K of Crawley p. 118. Line 10, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk54 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gX=G/gXI/gXj/gX

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 coass GIj=GIj
13 csbeq1 GIj=GIjGIj/gX=GIj/gX
14 12 13 ax-mp GIj/gX=GIj/gX
15 simp1 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIKHLWHRF=RN
16 simp21 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFTFIBNT
17 simp1l KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIKHLWH
18 simp22 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGT
19 simp31l KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIIT
20 6 7 ltrnco KHLWHGTITGIT
21 17 18 19 20 syl3anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGIT
22 simp23 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIPA¬P˙W
23 simp32 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIjT
24 simp333 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRjRGI
25 24 necomd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRGIRj
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 KHLWHRF=RNFTFIBNTGITPA¬P˙WjTRGIRjGIj/gX=GI/gXj/gX
27 15 16 21 22 23 25 26 syl132anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGIj/gX=GI/gXj/gX
28 simp2 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFTFIBNTGTPA¬P˙W
29 6 7 ltrnco KHLWHITjTIjT
30 17 19 23 29 syl3anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIIjT
31 simp31r KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRG=RI
32 simp332 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRjRG
33 32 31 neeqtrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRjRI
34 33 necomd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRIRj
35 simp331 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIjIB
36 1 6 7 8 trlcone KHLWHITjTRIRjjIBRIRIj
37 17 19 23 34 35 36 syl122anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRIRIj
38 31 37 eqnetrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRGRIj
39 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 KHLWHRF=RNFTFIBNTGTPA¬P˙WIjTRGRIjGIj/gX=G/gXIj/gX
40 15 28 30 38 39 syl112anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGIj/gX=G/gXIj/gX
41 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 KHLWHRF=RNFTFIBNTITPA¬P˙WjTRIRjIj/gX=I/gXj/gX
42 15 16 19 22 23 34 41 syl132anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIIj/gX=I/gXj/gX
43 42 coeq2d KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXIj/gX=G/gXI/gXj/gX
44 coass G/gXI/gXj/gX=G/gXI/gXj/gX
45 43 44 eqtr4di KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXIj/gX=G/gXI/gXj/gX
46 40 45 eqtrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGIj/gX=G/gXI/gXj/gX
47 14 27 46 3eqtr3a KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gX=G/gXI/gXj/gX