Metamath Proof Explorer


Theorem cdlemk54

Description: Part of proof of Lemma K of Crawley p. 118. Line 10, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk54 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I / g X j / g X = G / g X I / g X j / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 coass G I j = G I j
13 csbeq1 G I j = G I j G I j / g X = G I j / g X
14 12 13 ax-mp G I j / g X = G I j / g X
15 simp1 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I K HL W H R F = R N
16 simp21 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I F T F I B N T
17 simp1l K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I K HL W H
18 simp22 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G T
19 simp31l K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I I T
20 6 7 ltrnco K HL W H G T I T G I T
21 17 18 19 20 syl3anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I T
22 simp23 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I P A ¬ P ˙ W
23 simp32 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I j T
24 simp333 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R j R G I
25 24 necomd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R G I R j
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 K HL W H R F = R N F T F I B N T G I T P A ¬ P ˙ W j T R G I R j G I j / g X = G I / g X j / g X
27 15 16 21 22 23 25 26 syl132anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I j / g X = G I / g X j / g X
28 simp2 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I F T F I B N T G T P A ¬ P ˙ W
29 6 7 ltrnco K HL W H I T j T I j T
30 17 19 23 29 syl3anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I I j T
31 simp31r K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R G = R I
32 simp332 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R j R G
33 32 31 neeqtrd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R j R I
34 33 necomd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R I R j
35 simp331 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I j I B
36 1 6 7 8 trlcone K HL W H I T j T R I R j j I B R I R I j
37 17 19 23 34 35 36 syl122anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R I R I j
38 31 37 eqnetrd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I R G R I j
39 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I j T R G R I j G I j / g X = G / g X I j / g X
40 15 28 30 38 39 syl112anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I j / g X = G / g X I j / g X
41 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 K HL W H R F = R N F T F I B N T I T P A ¬ P ˙ W j T R I R j I j / g X = I / g X j / g X
42 15 16 19 22 23 34 41 syl132anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I I j / g X = I / g X j / g X
43 42 coeq2d K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G / g X I j / g X = G / g X I / g X j / g X
44 coass G / g X I / g X j / g X = G / g X I / g X j / g X
45 43 44 eqtr4di K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G / g X I j / g X = G / g X I / g X j / g X
46 40 45 eqtrd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I j / g X = G / g X I / g X j / g X
47 14 27 46 3eqtr3a K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I / g X j / g X = G / g X I / g X j / g X