Metamath Proof Explorer


Theorem cdlemkuv2

Description: Part of proof of Lemma K of Crawley p. 118. Line 16 on p. 119 for i = 1, where sigma_1 (p) is U , f_1 is D , and k_1 is O . (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
Assertion cdlemkuv2 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGP=P˙RG˙OP˙RGD-1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
12 simp13 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WGT
13 1 2 3 5 6 7 8 4 11 cdlemksv GTUG=ιjT|jP=P˙RG˙OP˙RGD-1
14 12 13 syl KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUG=ιjT|jP=P˙RG˙OP˙RGD-1
15 14 eqcomd KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WιjT|jP=P˙RG˙OP˙RGD-1=UG
16 1 2 3 4 5 6 7 8 9 10 11 cdlemkuel KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGT
17 simp11l KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WKHL
18 simp11r KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WWH
19 simp33 KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WPA¬P˙W
20 1 2 3 4 5 6 7 8 9 10 cdlemk16a KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WP˙RG˙OP˙RGD-1A¬P˙RG˙OP˙RGD-1˙W
21 2 5 6 7 cdleme KHLWHPA¬P˙WP˙RG˙OP˙RGD-1A¬P˙RG˙OP˙RGD-1˙W∃!jTjP=P˙RG˙OP˙RGD-1
22 17 18 19 20 21 syl211anc KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙W∃!jTjP=P˙RG˙OP˙RGD-1
23 nfcv _jT
24 nfriota1 _jιjT|jP=P˙Re˙OP˙ReD-1
25 23 24 nfmpt _jeTιjT|jP=P˙Re˙OP˙ReD-1
26 11 25 nfcxfr _jU
27 nfcv _jG
28 26 27 nffv _jUG
29 nfcv _jP
30 28 29 nffv _jUGP
31 30 nfeq1 jUGP=P˙RG˙OP˙RGD-1
32 fveq1 j=UGjP=UGP
33 32 eqeq1d j=UGjP=P˙RG˙OP˙RGD-1UGP=P˙RG˙OP˙RGD-1
34 28 31 33 riota2f UGT∃!jTjP=P˙RG˙OP˙RGD-1UGP=P˙RG˙OP˙RGD-1ιjT|jP=P˙RG˙OP˙RGD-1=UG
35 16 22 34 syl2anc KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGP=P˙RG˙OP˙RGD-1ιjT|jP=P˙RG˙OP˙RGD-1=UG
36 15 35 mpbird KHLWHRF=RNGTFTDTNTRDRFRDRGFIBGIBDIBPA¬P˙WUGP=P˙RG˙OP˙RGD-1