Metamath Proof Explorer


Theorem cdleml8

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b B=BaseK
cdleml6.j ˙=joinK
cdleml6.m ˙=meetK
cdleml6.h H=LHypK
cdleml6.t T=LTrnKW
cdleml6.r R=trLKW
cdleml6.p Q=ocKW
cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
cdleml6.u U=gTifsh=hgX
cdleml6.e E=TEndoKW
cdleml6.o 0˙=fTIB
Assertion cdleml8 KHLWHhThIBsEs0˙Us=IT

Proof

Step Hyp Ref Expression
1 cdleml6.b B=BaseK
2 cdleml6.j ˙=joinK
3 cdleml6.m ˙=meetK
4 cdleml6.h H=LHypK
5 cdleml6.t T=LTrnKW
6 cdleml6.r R=trLKW
7 cdleml6.p Q=ocKW
8 cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
9 cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
10 cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
11 cdleml6.u U=gTifsh=hgX
12 cdleml6.e E=TEndoKW
13 cdleml6.o 0˙=fTIB
14 simp1 KHLWHhThIBsEs0˙KHLWH
15 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml6 KHLWHhTsEs0˙UEUsh=h
16 15 3adant2r KHLWHhThIBsEs0˙UEUsh=h
17 16 simpld KHLWHhThIBsEs0˙UE
18 simp3l KHLWHhThIBsEs0˙sE
19 4 12 tendococl KHLWHUEsEUsE
20 14 17 18 19 syl3anc KHLWHhThIBsEs0˙UsE
21 4 5 12 tendoidcl KHLWHITE
22 21 3ad2ant1 KHLWHhThIBsEs0˙ITE
23 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml7 KHLWHhTsEs0˙Ush=ITh
24 23 3adant2r KHLWHhThIBsEs0˙Ush=ITh
25 simp2 KHLWHhThIBsEs0˙hThIB
26 1 4 5 12 tendocan KHLWHUsEITEUsh=IThhThIBUs=IT
27 14 20 22 24 25 26 syl131anc KHLWHhThIBsEs0˙Us=IT