Metamath Proof Explorer


Theorem chnfi

Description: There is a finite number of chains over finite domain, as long as the relation orders it. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnfi A Fin < ˙ Po A Chain A < ˙ Fin

Proof

Step Hyp Ref Expression
1 iunrab n = 0 A x Chain A < ˙ | x = n = x Chain A < ˙ | n 0 A x = n
2 simplr A Fin < ˙ Po A x Chain A < ˙ < ˙ Po A
3 simpr A Fin < ˙ Po A x Chain A < ˙ x Chain A < ˙
4 simpll A Fin < ˙ Po A x Chain A < ˙ A Fin
5 2 3 4 chnpolfz A Fin < ˙ Po A x Chain A < ˙ x 0 A
6 risset x 0 A n 0 A n = x
7 eqcom n = x x = n
8 7 rexbii n 0 A n = x n 0 A x = n
9 6 8 bitri x 0 A n 0 A x = n
10 5 9 sylib A Fin < ˙ Po A x Chain A < ˙ n 0 A x = n
11 10 rabeqcda A Fin < ˙ Po A x Chain A < ˙ | n 0 A x = n = Chain A < ˙
12 1 11 eqtr2id A Fin < ˙ Po A Chain A < ˙ = n = 0 A x Chain A < ˙ | x = n
13 fzfid A Fin < ˙ Po A 0 A Fin
14 chnflenfi A Fin x Chain A < ˙ | x = n Fin
15 14 adantr A Fin < ˙ Po A x Chain A < ˙ | x = n Fin
16 15 ralrimivw A Fin < ˙ Po A n 0 A x Chain A < ˙ | x = n Fin
17 iunfi 0 A Fin n 0 A x Chain A < ˙ | x = n Fin n = 0 A x Chain A < ˙ | x = n Fin
18 13 16 17 syl2anc A Fin < ˙ Po A n = 0 A x Chain A < ˙ | x = n Fin
19 12 18 eqeltrd A Fin < ˙ Po A Chain A < ˙ Fin