Metamath Proof Explorer


Theorem chrelat2i

Description: A consequence of relative atomicity. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion chrelat2i ¬ABxHAtomsxA¬xB

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 nssinpss ¬ABABA
4 1 2 chincli ABC
5 4 1 chrelati ABAxHAtomsABABxABxA
6 atelch xHAtomsxC
7 chlub ABCxCACABAxAABxA
8 4 1 7 mp3an13 xCABAxAABxA
9 simpr ABAxAxA
10 8 9 syl6bir xCABxAxA
11 10 adantld xCABABxABxAxA
12 ssin xAxBxAB
13 12 notbii ¬xAxB¬xAB
14 chnle ABCxC¬xABABABx
15 4 14 mpan xC¬xABABABx
16 13 15 bitrid xC¬xAxBABABx
17 16 8 anbi12d xC¬xAxBABAxAABABxABxA
18 pm3.21 xBxAxAxB
19 orcom xAxB¬xA¬xAxAxB
20 pm4.55 ¬¬xAxBxAxAxB¬xA
21 imor xAxAxB¬xAxAxB
22 19 20 21 3bitr4ri xAxAxB¬¬xAxBxA
23 18 22 sylib xB¬¬xAxBxA
24 23 con2i ¬xAxBxA¬xB
25 24 adantrl ¬xAxBABAxA¬xB
26 17 25 syl6bir xCABABxABxA¬xB
27 11 26 jcad xCABABxABxAxA¬xB
28 6 27 syl xHAtomsABABxABxAxA¬xB
29 28 reximia xHAtomsABABxABxAxHAtomsxA¬xB
30 5 29 syl ABAxHAtomsxA¬xB
31 3 30 sylbi ¬ABxHAtomsxA¬xB
32 sstr2 xAABxB
33 32 com12 ABxAxB
34 33 ralrimivw ABxHAtomsxAxB
35 iman xAxB¬xA¬xB
36 35 ralbii xHAtomsxAxBxHAtoms¬xA¬xB
37 ralnex xHAtoms¬xA¬xB¬xHAtomsxA¬xB
38 36 37 bitri xHAtomsxAxB¬xHAtomsxA¬xB
39 34 38 sylib AB¬xHAtomsxA¬xB
40 39 con2i xHAtomsxA¬xB¬AB
41 31 40 impbii ¬ABxHAtomsxA¬xB