| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cicrcl |
|
| 2 |
|
ciclcl |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
simpl |
|
| 6 |
|
simpr |
|
| 7 |
6
|
adantl |
|
| 8 |
|
simpl |
|
| 9 |
8
|
adantl |
|
| 10 |
3 4 5 7 9
|
cic |
|
| 11 |
|
eqid |
|
| 12 |
4 11 5 7 9 3
|
isoval |
|
| 13 |
4 11 5 9 7
|
invsym2 |
|
| 14 |
13
|
eqcomd |
|
| 15 |
14
|
dmeqd |
|
| 16 |
|
df-rn |
|
| 17 |
15 16
|
eqtr4di |
|
| 18 |
12 17
|
eqtrd |
|
| 19 |
18
|
eleq2d |
|
| 20 |
|
vex |
|
| 21 |
|
elrng |
|
| 22 |
20 21
|
mp1i |
|
| 23 |
19 22
|
bitrd |
|
| 24 |
|
df-br |
|
| 25 |
24
|
exbii |
|
| 26 |
|
vex |
|
| 27 |
26 20
|
opeldm |
|
| 28 |
4 11 5 9 7 3
|
isoval |
|
| 29 |
28
|
eqcomd |
|
| 30 |
29
|
eleq2d |
|
| 31 |
5
|
adantr |
|
| 32 |
9
|
adantr |
|
| 33 |
7
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
3 4 31 32 33 34
|
brcici |
|
| 36 |
35
|
ex |
|
| 37 |
30 36
|
sylbid |
|
| 38 |
27 37
|
syl5com |
|
| 39 |
38
|
exlimiv |
|
| 40 |
39
|
com12 |
|
| 41 |
25 40
|
biimtrid |
|
| 42 |
23 41
|
sylbid |
|
| 43 |
42
|
exlimdv |
|
| 44 |
10 43
|
sylbid |
|
| 45 |
44
|
impancom |
|
| 46 |
1 2 45
|
mp2and |
|