Metamath Proof Explorer


Theorem climge0

Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 Z=M
climshft2.2 φM
climrecl.3 φFA
climrecl.4 φkZFk
climge0.5 φkZ0Fk
Assertion climge0 φ0A

Proof

Step Hyp Ref Expression
1 climshft2.1 Z=M
2 climshft2.2 φM
3 climrecl.3 φFA
4 climrecl.4 φkZFk
5 climge0.5 φkZ0Fk
6 1 uzsup MsupZ*<=+∞
7 2 6 syl φsupZ*<=+∞
8 climrel Rel
9 8 brrelex1i FAFV
10 3 9 syl φFV
11 eqid kZFk=kZFk
12 1 11 climmpt MFVFAkZFkA
13 2 10 12 syl2anc φFAkZFkA
14 3 13 mpbid φkZFkA
15 4 recnd φkZFk
16 15 fmpttd φkZFk:Z
17 1 2 16 rlimclim φkZFkAkZFkA
18 14 17 mpbird φkZFkA
19 7 18 4 5 rlimge0 φ0A