Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climshft2.1 | |
|
climshft2.2 | |
||
climrecl.3 | |
||
climrecl.4 | |
||
climge0.5 | |
||
Assertion | climge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climshft2.1 | |
|
2 | climshft2.2 | |
|
3 | climrecl.3 | |
|
4 | climrecl.4 | |
|
5 | climge0.5 | |
|
6 | 1 | uzsup | |
7 | 2 6 | syl | |
8 | climrel | |
|
9 | 8 | brrelex1i | |
10 | 3 9 | syl | |
11 | eqid | |
|
12 | 1 11 | climmpt | |
13 | 2 10 12 | syl2anc | |
14 | 3 13 | mpbid | |
15 | 4 | recnd | |
16 | 15 | fmpttd | |
17 | 1 2 16 | rlimclim | |
18 | 14 17 | mpbird | |
19 | 7 18 4 5 | rlimge0 | |