Metamath Proof Explorer


Theorem climlimsup

Description: A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex for a counterexample). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climlimsup.1 φ M
climlimsup.2 Z = M
climlimsup.3 φ F : Z
Assertion climlimsup φ F dom F lim sup F

Proof

Step Hyp Ref Expression
1 climlimsup.1 φ M
2 climlimsup.2 Z = M
3 climlimsup.3 φ F : Z
4 3 adantr φ F dom F : Z
5 1 adantr φ F dom M
6 simpr φ F dom F dom
7 2 climcau M F dom x + m Z k m F k F m < x
8 5 6 7 syl2anc φ F dom x + m Z k m F k F m < x
9 2 4 8 caurcvg φ F dom F lim sup F
10 climrel Rel
11 releldm Rel F lim sup F F dom
12 10 11 mpan F lim sup F F dom
13 12 adantl φ F lim sup F F dom
14 9 13 impbida φ F dom F lim sup F