Metamath Proof Explorer


Theorem climlimsup

Description: A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex for a counterexample). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climlimsup.1 φM
climlimsup.2 Z=M
climlimsup.3 φF:Z
Assertion climlimsup φFdomFlim supF

Proof

Step Hyp Ref Expression
1 climlimsup.1 φM
2 climlimsup.2 Z=M
3 climlimsup.3 φF:Z
4 3 adantr φFdomF:Z
5 1 adantr φFdomM
6 simpr φFdomFdom
7 2 climcau MFdomx+mZkmFkFm<x
8 5 6 7 syl2anc φFdomx+mZkmFkFm<x
9 2 4 8 caurcvg φFdomFlim supF
10 climrel Rel
11 releldm RelFlim supFFdom
12 10 11 mpan Flim supFFdom
13 12 adantl φFlim supFFdom
14 9 13 impbida φFdomFlim supF