Description: A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex for a counterexample). (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climlimsup.1 | |
|
climlimsup.2 | |
||
climlimsup.3 | |
||
Assertion | climlimsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climlimsup.1 | |
|
2 | climlimsup.2 | |
|
3 | climlimsup.3 | |
|
4 | 3 | adantr | |
5 | 1 | adantr | |
6 | simpr | |
|
7 | 2 | climcau | |
8 | 5 6 7 | syl2anc | |
9 | 2 4 8 | caurcvg | |
10 | climrel | |
|
11 | releldm | |
|
12 | 10 11 | mpan | |
13 | 12 | adantl | |
14 | 9 13 | impbida | |