Metamath Proof Explorer


Theorem climsuselem1

Description: The subsequence index I has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climsuselem1.1 Z=M
climsuselem1.2 φM
climsuselem1.3 φIMZ
climsuselem1.4 φkZIk+1Ik+1
Assertion climsuselem1 φKZIKK

Proof

Step Hyp Ref Expression
1 climsuselem1.1 Z=M
2 climsuselem1.2 φM
3 climsuselem1.3 φIMZ
4 climsuselem1.4 φkZIk+1Ik+1
5 1 eleq2i KZKM
6 5 biimpi KZKM
7 6 adantl φKZKM
8 simpl φKZφ
9 fveq2 j=MIj=IM
10 fveq2 j=Mj=M
11 9 10 eleq12d j=MIjjIMM
12 11 imbi2d j=MφIjjφIMM
13 fveq2 j=kIj=Ik
14 fveq2 j=kj=k
15 13 14 eleq12d j=kIjjIkk
16 15 imbi2d j=kφIjjφIkk
17 fveq2 j=k+1Ij=Ik+1
18 fveq2 j=k+1j=k+1
19 17 18 eleq12d j=k+1IjjIk+1k+1
20 19 imbi2d j=k+1φIjjφIk+1k+1
21 fveq2 j=KIj=IK
22 fveq2 j=Kj=K
23 21 22 eleq12d j=KIjjIKK
24 23 imbi2d j=KφIjjφIKK
25 3 1 eleqtrdi φIMM
26 25 a1i MφIMM
27 simpr kMφIkkφφ
28 simpll kMφIkkφkM
29 simplr kMφIkkφφIkk
30 27 29 mpd kMφIkkφIkk
31 eluzelz kMk
32 31 3ad2ant2 φkMIkkk
33 32 peano2zd φkMIkkk+1
34 33 zred φkMIkkk+1
35 eluzelre IkkIk
36 35 3ad2ant3 φkMIkkIk
37 1red φkMIkk1
38 36 37 readdcld φkMIkkIk+1
39 1 eqimss2i MZ
40 39 a1i φMZ
41 40 sseld φkMkZ
42 41 imdistani φkMφkZ
43 42 4 syl φkMIk+1Ik+1
44 43 3adant3 φkMIkkIk+1Ik+1
45 eluzelz Ik+1Ik+1Ik+1
46 44 45 syl φkMIkkIk+1
47 46 zred φkMIkkIk+1
48 32 zred φkMIkkk
49 eluzle IkkkIk
50 49 3ad2ant3 φkMIkkkIk
51 48 36 37 50 leadd1dd φkMIkkk+1Ik+1
52 eluzle Ik+1Ik+1Ik+1Ik+1
53 44 52 syl φkMIkkIk+1Ik+1
54 34 38 47 51 53 letrd φkMIkkk+1Ik+1
55 eluz k+1Ik+1Ik+1k+1k+1Ik+1
56 33 46 55 syl2anc φkMIkkIk+1k+1k+1Ik+1
57 54 56 mpbird φkMIkkIk+1k+1
58 27 28 30 57 syl3anc kMφIkkφIk+1k+1
59 58 exp31 kMφIkkφIk+1k+1
60 12 16 20 24 26 59 uzind4 KMφIKK
61 7 8 60 sylc φKZIKK