Metamath Proof Explorer


Theorem clwwlknonclwlknonf1o

Description: F is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022) (Proof shortened by AV, 7-Aug-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwwlknonclwlknonf1o.v V=VtxG
clwwlknonclwlknonf1o.w W=wClWalksG|1stw=N2ndw0=X
clwwlknonclwlknonf1o.f F=cW2ndcprefix1stc
Assertion clwwlknonclwlknonf1o GUSHGraphXVNF:W1-1 ontoXClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 clwwlknonclwlknonf1o.v V=VtxG
2 clwwlknonclwlknonf1o.w W=wClWalksG|1stw=N2ndw0=X
3 clwwlknonclwlknonf1o.f F=cW2ndcprefix1stc
4 eqid wClWalksG|1stw=N=wClWalksG|1stw=N
5 eqid cwClWalksG|1stw=N2ndcprefix1stc=cwClWalksG|1stw=N2ndcprefix1stc
6 eqid 1stc=1stc
7 eqid 2ndc=2ndc
8 6 7 4 5 clwlknf1oclwwlkn GUSHGraphNcwClWalksG|1stw=N2ndcprefix1stc:wClWalksG|1stw=N1-1 ontoNClWWalksNG
9 8 3adant2 GUSHGraphXVNcwClWalksG|1stw=N2ndcprefix1stc:wClWalksG|1stw=N1-1 ontoNClWWalksNG
10 fveq1 s=2ndcprefix1stcs0=2ndcprefix1stc0
11 10 3ad2ant3 GUSHGraphXVNcwClWalksG|1stw=Ns=2ndcprefix1stcs0=2ndcprefix1stc0
12 2fveq3 w=c1stw=1stc
13 12 eqeq1d w=c1stw=N1stc=N
14 13 elrab cwClWalksG|1stw=NcClWalksG1stc=N
15 clwlkwlk cClWalksGcWalksG
16 wlkcpr cWalksG1stcWalksG2ndc
17 eqid VtxG=VtxG
18 17 wlkpwrd 1stcWalksG2ndc2ndcWordVtxG
19 18 3ad2ant1 1stcWalksG2ndc1stc=NGUSHGraphXVN2ndcWordVtxG
20 elnnuz NN1
21 eluzfz2 N1N1N
22 20 21 sylbi NN1N
23 fzelp1 N1NN1N+1
24 22 23 syl NN1N+1
25 24 3ad2ant3 GUSHGraphXVNN1N+1
26 25 3ad2ant3 1stcWalksG2ndc1stc=NGUSHGraphXVNN1N+1
27 id 1stc=N1stc=N
28 oveq1 1stc=N1stc+1=N+1
29 28 oveq2d 1stc=N11stc+1=1N+1
30 27 29 eleq12d 1stc=N1stc11stc+1N1N+1
31 30 3ad2ant2 1stcWalksG2ndc1stc=NGUSHGraphXVN1stc11stc+1N1N+1
32 26 31 mpbird 1stcWalksG2ndc1stc=NGUSHGraphXVN1stc11stc+1
33 wlklenvp1 1stcWalksG2ndc2ndc=1stc+1
34 33 oveq2d 1stcWalksG2ndc12ndc=11stc+1
35 34 eleq2d 1stcWalksG2ndc1stc12ndc1stc11stc+1
36 35 3ad2ant1 1stcWalksG2ndc1stc=NGUSHGraphXVN1stc12ndc1stc11stc+1
37 32 36 mpbird 1stcWalksG2ndc1stc=NGUSHGraphXVN1stc12ndc
38 19 37 jca 1stcWalksG2ndc1stc=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
39 38 3exp 1stcWalksG2ndc1stc=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
40 16 39 sylbi cWalksG1stc=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
41 15 40 syl cClWalksG1stc=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
42 41 imp cClWalksG1stc=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
43 14 42 sylbi cwClWalksG|1stw=NGUSHGraphXVN2ndcWordVtxG1stc12ndc
44 43 impcom GUSHGraphXVNcwClWalksG|1stw=N2ndcWordVtxG1stc12ndc
45 pfxfv0 2ndcWordVtxG1stc12ndc2ndcprefix1stc0=2ndc0
46 44 45 syl GUSHGraphXVNcwClWalksG|1stw=N2ndcprefix1stc0=2ndc0
47 46 3adant3 GUSHGraphXVNcwClWalksG|1stw=Ns=2ndcprefix1stc2ndcprefix1stc0=2ndc0
48 11 47 eqtrd GUSHGraphXVNcwClWalksG|1stw=Ns=2ndcprefix1stcs0=2ndc0
49 48 eqeq1d GUSHGraphXVNcwClWalksG|1stw=Ns=2ndcprefix1stcs0=X2ndc0=X
50 nfv w2ndc0=X
51 fveq2 w=c2ndw=2ndc
52 51 fveq1d w=c2ndw0=2ndc0
53 52 eqeq1d w=c2ndw0=X2ndc0=X
54 50 53 sbiev cw2ndw0=X2ndc0=X
55 49 54 bitr4di GUSHGraphXVNcwClWalksG|1stw=Ns=2ndcprefix1stcs0=Xcw2ndw0=X
56 2 4 3 5 9 55 f1ossf1o GUSHGraphXVNF:W1-1 ontosNClWWalksNG|s0=X
57 clwwlknon XClWWalksNOnGN=sNClWWalksNG|s0=X
58 f1oeq3 XClWWalksNOnGN=sNClWWalksNG|s0=XF:W1-1 ontoXClWWalksNOnGNF:W1-1 ontosNClWWalksNG|s0=X
59 57 58 ax-mp F:W1-1 ontoXClWWalksNOnGNF:W1-1 ontosNClWWalksNG|s0=X
60 56 59 sylibr GUSHGraphXVNF:W1-1 ontoXClWWalksNOnGN