Description: F is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022) (Proof shortened by AV, 7-Aug-2022) (Revised by AV, 1-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwwlknonclwlknonf1o.v | |
|
clwwlknonclwlknonf1o.w | |
||
clwwlknonclwlknonf1o.f | |
||
Assertion | clwwlknonclwlknonf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonclwlknonf1o.v | |
|
2 | clwwlknonclwlknonf1o.w | |
|
3 | clwwlknonclwlknonf1o.f | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 4 5 | clwlknf1oclwwlkn | |
9 | 8 | 3adant2 | |
10 | fveq1 | |
|
11 | 10 | 3ad2ant3 | |
12 | 2fveq3 | |
|
13 | 12 | eqeq1d | |
14 | 13 | elrab | |
15 | clwlkwlk | |
|
16 | wlkcpr | |
|
17 | eqid | |
|
18 | 17 | wlkpwrd | |
19 | 18 | 3ad2ant1 | |
20 | elnnuz | |
|
21 | eluzfz2 | |
|
22 | 20 21 | sylbi | |
23 | fzelp1 | |
|
24 | 22 23 | syl | |
25 | 24 | 3ad2ant3 | |
26 | 25 | 3ad2ant3 | |
27 | id | |
|
28 | oveq1 | |
|
29 | 28 | oveq2d | |
30 | 27 29 | eleq12d | |
31 | 30 | 3ad2ant2 | |
32 | 26 31 | mpbird | |
33 | wlklenvp1 | |
|
34 | 33 | oveq2d | |
35 | 34 | eleq2d | |
36 | 35 | 3ad2ant1 | |
37 | 32 36 | mpbird | |
38 | 19 37 | jca | |
39 | 38 | 3exp | |
40 | 16 39 | sylbi | |
41 | 15 40 | syl | |
42 | 41 | imp | |
43 | 14 42 | sylbi | |
44 | 43 | impcom | |
45 | pfxfv0 | |
|
46 | 44 45 | syl | |
47 | 46 | 3adant3 | |
48 | 11 47 | eqtrd | |
49 | 48 | eqeq1d | |
50 | nfv | |
|
51 | fveq2 | |
|
52 | 51 | fveq1d | |
53 | 52 | eqeq1d | |
54 | 50 53 | sbiev | |
55 | 49 54 | bitr4di | |
56 | 2 4 3 5 9 55 | f1ossf1o | |
57 | clwwlknon | |
|
58 | f1oeq3 | |
|
59 | 57 58 | ax-mp | |
60 | 56 59 | sylibr | |