Metamath Proof Explorer


Theorem cmtbr2N

Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. ( cmbr2i analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtbr2.b B=BaseK
cmtbr2.j ˙=joinK
cmtbr2.m ˙=meetK
cmtbr2.o ˙=ocK
cmtbr2.c C=cmK
Assertion cmtbr2N KOMLXBYBXCYX=X˙Y˙X˙˙Y

Proof

Step Hyp Ref Expression
1 cmtbr2.b B=BaseK
2 cmtbr2.j ˙=joinK
3 cmtbr2.m ˙=meetK
4 cmtbr2.o ˙=ocK
5 cmtbr2.c C=cmK
6 1 4 5 cmt4N KOMLXBYBXCY˙XC˙Y
7 simp1 KOMLXBYBKOML
8 omlop KOMLKOP
9 8 3ad2ant1 KOMLXBYBKOP
10 simp2 KOMLXBYBXB
11 1 4 opoccl KOPXB˙XB
12 9 10 11 syl2anc KOMLXBYB˙XB
13 simp3 KOMLXBYBYB
14 1 4 opoccl KOPYB˙YB
15 9 13 14 syl2anc KOMLXBYB˙YB
16 1 2 3 4 5 cmtvalN KOML˙XB˙YB˙XC˙Y˙X=˙X˙˙Y˙˙X˙˙˙Y
17 7 12 15 16 syl3anc KOMLXBYB˙XC˙Y˙X=˙X˙˙Y˙˙X˙˙˙Y
18 eqcom X=X˙Y˙X˙˙YX˙Y˙X˙˙Y=X
19 18 a1i KOMLXBYBX=X˙Y˙X˙˙YX˙Y˙X˙˙Y=X
20 omllat KOMLKLat
21 20 3ad2ant1 KOMLXBYBKLat
22 1 2 latjcl KLatXBYBX˙YB
23 20 22 syl3an1 KOMLXBYBX˙YB
24 1 2 latjcl KLatXB˙YBX˙˙YB
25 21 10 15 24 syl3anc KOMLXBYBX˙˙YB
26 1 3 latmcl KLatX˙YBX˙˙YBX˙Y˙X˙˙YB
27 21 23 25 26 syl3anc KOMLXBYBX˙Y˙X˙˙YB
28 1 4 opcon3b KOPX˙Y˙X˙˙YBXBX˙Y˙X˙˙Y=X˙X=˙X˙Y˙X˙˙Y
29 9 27 10 28 syl3anc KOMLXBYBX˙Y˙X˙˙Y=X˙X=˙X˙Y˙X˙˙Y
30 omlol KOMLKOL
31 30 3ad2ant1 KOMLXBYBKOL
32 1 2 3 4 oldmm1 KOLX˙YBX˙˙YB˙X˙Y˙X˙˙Y=˙X˙Y˙˙X˙˙Y
33 31 23 25 32 syl3anc KOMLXBYB˙X˙Y˙X˙˙Y=˙X˙Y˙˙X˙˙Y
34 1 2 3 4 oldmj1 KOLXBYB˙X˙Y=˙X˙˙Y
35 30 34 syl3an1 KOMLXBYB˙X˙Y=˙X˙˙Y
36 1 2 3 4 oldmj1 KOLXB˙YB˙X˙˙Y=˙X˙˙˙Y
37 31 10 15 36 syl3anc KOMLXBYB˙X˙˙Y=˙X˙˙˙Y
38 35 37 oveq12d KOMLXBYB˙X˙Y˙˙X˙˙Y=˙X˙˙Y˙˙X˙˙˙Y
39 33 38 eqtrd KOMLXBYB˙X˙Y˙X˙˙Y=˙X˙˙Y˙˙X˙˙˙Y
40 39 eqeq2d KOMLXBYB˙X=˙X˙Y˙X˙˙Y˙X=˙X˙˙Y˙˙X˙˙˙Y
41 19 29 40 3bitrrd KOMLXBYB˙X=˙X˙˙Y˙˙X˙˙˙YX=X˙Y˙X˙˙Y
42 6 17 41 3bitrd KOMLXBYBXCYX=X˙Y˙X˙˙Y