Metamath Proof Explorer


Theorem cnambpcma

Description: ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018)

Ref Expression
Assertion cnambpcma A B C A B + C - A = C B

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 1 3adant3 A B C A B
3 simp3 A B C C
4 simp1 A B C A
5 2 3 4 addsubd A B C A B + C - A = A B - A + C
6 simpl A B A
7 simpr A B B
8 6 7 6 3jca A B A B A
9 8 3adant3 A B C A B A
10 sub32 A B A A - B - A = A - A - B
11 9 10 syl A B C A - B - A = A - A - B
12 11 oveq1d A B C A B - A + C = A A - B + C
13 subcl A A A A
14 13 anidms A A A
15 14 3ad2ant1 A B C A A
16 simp2 A B C B
17 15 16 3 subadd23d A B C A A - B + C = A A + C - B
18 subid A A A = 0
19 18 oveq1d A A A + C - B = 0 + C - B
20 19 3ad2ant1 A B C A A + C - B = 0 + C - B
21 subcl C B C B
22 21 ancoms B C C B
23 22 addid2d B C 0 + C - B = C B
24 23 3adant1 A B C 0 + C - B = C B
25 17 20 24 3eqtrd A B C A A - B + C = C B
26 5 12 25 3eqtrd A B C A B + C - A = C B