Metamath Proof Explorer


Theorem cncfcompt2

Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses cncfcompt2.xph xφ
cncfcompt2.ab φxAR:AcnB
cncfcompt2.cd φyCS:CcnE
cncfcompt2.bc φBC
cncfcompt2.st y=RS=T
Assertion cncfcompt2 φxAT:AcnE

Proof

Step Hyp Ref Expression
1 cncfcompt2.xph xφ
2 cncfcompt2.ab φxAR:AcnB
3 cncfcompt2.cd φyCS:CcnE
4 cncfcompt2.bc φBC
5 cncfcompt2.st y=RS=T
6 4 adantr φxABC
7 cncff xAR:AcnBxAR:AB
8 2 7 syl φxAR:AB
9 8 fvmptelcdm φxARB
10 6 9 sseldd φxARC
11 10 ex φxARC
12 1 11 ralrimi φxARC
13 eqidd φxAR=xAR
14 eqidd φyCS=yCS
15 12 13 14 5 fmptcof φyCSxAR=xAT
16 15 eqcomd φxAT=yCSxAR
17 cncfrss yCS:CcnEC
18 3 17 syl φC
19 cncfss BCCAcnBAcnC
20 4 18 19 syl2anc φAcnBAcnC
21 20 2 sseldd φxAR:AcnC
22 21 3 cncfco φyCSxAR:AcnE
23 16 22 eqeltrd φxAT:AcnE