Metamath Proof Explorer


Theorem cncfioobdlem

Description: G actually extends F . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfioobdlem.a φ A
cncfioobdlem.b φ B
cncfioobdlem.f φ F : A B V
cncfioobdlem.g G = x A B if x = A R if x = B L F x
cncfioobdlem.c φ C A B
Assertion cncfioobdlem φ G C = F C

Proof

Step Hyp Ref Expression
1 cncfioobdlem.a φ A
2 cncfioobdlem.b φ B
3 cncfioobdlem.f φ F : A B V
4 cncfioobdlem.g G = x A B if x = A R if x = B L F x
5 cncfioobdlem.c φ C A B
6 4 a1i φ G = x A B if x = A R if x = B L F x
7 1 adantr φ x = C A
8 1 rexrd φ A *
9 2 rexrd φ B *
10 elioo2 A * B * C A B C A < C C < B
11 8 9 10 syl2anc φ C A B C A < C C < B
12 5 11 mpbid φ C A < C C < B
13 12 simp2d φ A < C
14 13 adantr φ x = C A < C
15 eqcom x = C C = x
16 15 biimpi x = C C = x
17 16 adantl φ x = C C = x
18 14 17 breqtrd φ x = C A < x
19 7 18 gtned φ x = C x A
20 19 neneqd φ x = C ¬ x = A
21 20 iffalsed φ x = C if x = A R if x = B L F x = if x = B L F x
22 simpr φ x = C x = C
23 5 elioored φ C
24 23 adantr φ x = C C
25 22 24 eqeltrd φ x = C x
26 12 simp3d φ C < B
27 26 adantr φ x = C C < B
28 22 27 eqbrtrd φ x = C x < B
29 25 28 ltned φ x = C x B
30 29 neneqd φ x = C ¬ x = B
31 30 iffalsed φ x = C if x = B L F x = F x
32 22 fveq2d φ x = C F x = F C
33 21 31 32 3eqtrd φ x = C if x = A R if x = B L F x = F C
34 ioossicc A B A B
35 34 5 sseldi φ C A B
36 3 5 ffvelrnd φ F C V
37 6 33 35 36 fvmptd φ G C = F C