Description: G actually extends F . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cncfioobdlem.a | |
|
cncfioobdlem.b | |
||
cncfioobdlem.f | |
||
cncfioobdlem.g | |
||
cncfioobdlem.c | |
||
Assertion | cncfioobdlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfioobdlem.a | |
|
2 | cncfioobdlem.b | |
|
3 | cncfioobdlem.f | |
|
4 | cncfioobdlem.g | |
|
5 | cncfioobdlem.c | |
|
6 | 4 | a1i | |
7 | 1 | adantr | |
8 | 1 | rexrd | |
9 | 2 | rexrd | |
10 | elioo2 | |
|
11 | 8 9 10 | syl2anc | |
12 | 5 11 | mpbid | |
13 | 12 | simp2d | |
14 | 13 | adantr | |
15 | eqcom | |
|
16 | 15 | biimpi | |
17 | 16 | adantl | |
18 | 14 17 | breqtrd | |
19 | 7 18 | gtned | |
20 | 19 | neneqd | |
21 | 20 | iffalsed | |
22 | simpr | |
|
23 | 5 | elioored | |
24 | 23 | adantr | |
25 | 22 24 | eqeltrd | |
26 | 12 | simp3d | |
27 | 26 | adantr | |
28 | 22 27 | eqbrtrd | |
29 | 25 28 | ltned | |
30 | 29 | neneqd | |
31 | 30 | iffalsed | |
32 | 22 | fveq2d | |
33 | 21 31 32 | 3eqtrd | |
34 | ioossicc | |
|
35 | 34 5 | sselid | |
36 | 3 5 | ffvelcdmd | |
37 | 6 33 35 36 | fvmptd | |