Metamath Proof Explorer


Theorem cncfioobdlem

Description: G actually extends F . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfioobdlem.a φA
cncfioobdlem.b φB
cncfioobdlem.f φF:ABV
cncfioobdlem.g G=xABifx=ARifx=BLFx
cncfioobdlem.c φCAB
Assertion cncfioobdlem φGC=FC

Proof

Step Hyp Ref Expression
1 cncfioobdlem.a φA
2 cncfioobdlem.b φB
3 cncfioobdlem.f φF:ABV
4 cncfioobdlem.g G=xABifx=ARifx=BLFx
5 cncfioobdlem.c φCAB
6 4 a1i φG=xABifx=ARifx=BLFx
7 1 adantr φx=CA
8 1 rexrd φA*
9 2 rexrd φB*
10 elioo2 A*B*CABCA<CC<B
11 8 9 10 syl2anc φCABCA<CC<B
12 5 11 mpbid φCA<CC<B
13 12 simp2d φA<C
14 13 adantr φx=CA<C
15 eqcom x=CC=x
16 15 biimpi x=CC=x
17 16 adantl φx=CC=x
18 14 17 breqtrd φx=CA<x
19 7 18 gtned φx=CxA
20 19 neneqd φx=C¬x=A
21 20 iffalsed φx=Cifx=ARifx=BLFx=ifx=BLFx
22 simpr φx=Cx=C
23 5 elioored φC
24 23 adantr φx=CC
25 22 24 eqeltrd φx=Cx
26 12 simp3d φC<B
27 26 adantr φx=CC<B
28 22 27 eqbrtrd φx=Cx<B
29 25 28 ltned φx=CxB
30 29 neneqd φx=C¬x=B
31 30 iffalsed φx=Cifx=BLFx=Fx
32 22 fveq2d φx=CFx=FC
33 21 31 32 3eqtrd φx=Cifx=ARifx=BLFx=FC
34 ioossicc ABAB
35 34 5 sselid φCAB
36 3 5 ffvelcdmd φFCV
37 6 33 35 36 fvmptd φGC=FC