Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | cnegex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre | |
|
2 | ax-rnegex | |
|
3 | ax-rnegex | |
|
4 | 2 3 | anim12i | |
5 | reeanv | |
|
6 | 4 5 | sylibr | |
7 | ax-icn | |
|
8 | 7 | a1i | |
9 | simplrr | |
|
10 | 9 | recnd | |
11 | 8 10 | mulcld | |
12 | simplrl | |
|
13 | 12 | recnd | |
14 | 11 13 | addcld | |
15 | simplll | |
|
16 | 15 | recnd | |
17 | simpllr | |
|
18 | 17 | recnd | |
19 | 8 18 | mulcld | |
20 | 16 19 11 | addassd | |
21 | 8 18 10 | adddid | |
22 | simprr | |
|
23 | 22 | oveq2d | |
24 | mul01 | |
|
25 | 7 24 | ax-mp | |
26 | 23 25 | eqtrdi | |
27 | 21 26 | eqtr3d | |
28 | 27 | oveq2d | |
29 | addrid | |
|
30 | 16 29 | syl | |
31 | 20 28 30 | 3eqtrd | |
32 | 31 | oveq1d | |
33 | 16 19 | addcld | |
34 | 33 11 13 | addassd | |
35 | 32 34 | eqtr3d | |
36 | simprl | |
|
37 | 35 36 | eqtr3d | |
38 | oveq2 | |
|
39 | 38 | eqeq1d | |
40 | 39 | rspcev | |
41 | 14 37 40 | syl2anc | |
42 | 41 | ex | |
43 | 42 | rexlimdvva | |
44 | 6 43 | mpd | |
45 | oveq1 | |
|
46 | 45 | eqeq1d | |
47 | 46 | rexbidv | |
48 | 44 47 | syl5ibrcom | |
49 | 48 | rexlimivv | |
50 | 1 49 | syl | |