Metamath Proof Explorer


Theorem cnegex

Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion cnegex AxA+x=0

Proof

Step Hyp Ref Expression
1 cnre AabA=a+ib
2 ax-rnegex aca+c=0
3 ax-rnegex bdb+d=0
4 2 3 anim12i abca+c=0db+d=0
5 reeanv cda+c=0b+d=0ca+c=0db+d=0
6 4 5 sylibr abcda+c=0b+d=0
7 ax-icn i
8 7 a1i abcda+c=0b+d=0i
9 simplrr abcda+c=0b+d=0d
10 9 recnd abcda+c=0b+d=0d
11 8 10 mulcld abcda+c=0b+d=0id
12 simplrl abcda+c=0b+d=0c
13 12 recnd abcda+c=0b+d=0c
14 11 13 addcld abcda+c=0b+d=0id+c
15 simplll abcda+c=0b+d=0a
16 15 recnd abcda+c=0b+d=0a
17 simpllr abcda+c=0b+d=0b
18 17 recnd abcda+c=0b+d=0b
19 8 18 mulcld abcda+c=0b+d=0ib
20 16 19 11 addassd abcda+c=0b+d=0a+ib+id=a+ib+id
21 8 18 10 adddid abcda+c=0b+d=0ib+d=ib+id
22 simprr abcda+c=0b+d=0b+d=0
23 22 oveq2d abcda+c=0b+d=0ib+d=i0
24 mul01 ii0=0
25 7 24 ax-mp i0=0
26 23 25 eqtrdi abcda+c=0b+d=0ib+d=0
27 21 26 eqtr3d abcda+c=0b+d=0ib+id=0
28 27 oveq2d abcda+c=0b+d=0a+ib+id=a+0
29 addrid aa+0=a
30 16 29 syl abcda+c=0b+d=0a+0=a
31 20 28 30 3eqtrd abcda+c=0b+d=0a+ib+id=a
32 31 oveq1d abcda+c=0b+d=0a+ib+id+c=a+c
33 16 19 addcld abcda+c=0b+d=0a+ib
34 33 11 13 addassd abcda+c=0b+d=0a+ib+id+c=a+ib+id+c
35 32 34 eqtr3d abcda+c=0b+d=0a+c=a+ib+id+c
36 simprl abcda+c=0b+d=0a+c=0
37 35 36 eqtr3d abcda+c=0b+d=0a+ib+id+c=0
38 oveq2 x=id+ca+ib+x=a+ib+id+c
39 38 eqeq1d x=id+ca+ib+x=0a+ib+id+c=0
40 39 rspcev id+ca+ib+id+c=0xa+ib+x=0
41 14 37 40 syl2anc abcda+c=0b+d=0xa+ib+x=0
42 41 ex abcda+c=0b+d=0xa+ib+x=0
43 42 rexlimdvva abcda+c=0b+d=0xa+ib+x=0
44 6 43 mpd abxa+ib+x=0
45 oveq1 A=a+ibA+x=a+ib+x
46 45 eqeq1d A=a+ibA+x=0a+ib+x=0
47 46 rexbidv A=a+ibxA+x=0xa+ib+x=0
48 44 47 syl5ibrcom abA=a+ibxA+x=0
49 48 rexlimivv abA=a+ibxA+x=0
50 1 49 syl AxA+x=0