Metamath Proof Explorer


Theorem cnelsubclem

Description: Lemma for cnelsubc . (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses cnelsubclem.1 J V
cnelsubclem.2 S V
cnelsubclem.3 C Cat J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat
Assertion cnelsubclem c Cat j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat

Proof

Step Hyp Ref Expression
1 cnelsubclem.1 J V
2 cnelsubclem.2 S V
3 cnelsubclem.3 C Cat J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat
4 3 simp1i C Cat
5 3 simp2i J Fn S × S
6 3 simp3i J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat
7 id s = S s = S
8 7 sqxpeqd s = S s × s = S × S
9 8 fneq2d s = S J Fn s × s J Fn S × S
10 raleq s = S x s Id C x x J x x S Id C x x J x
11 10 notbid s = S ¬ x s Id C x x J x ¬ x S Id C x x J x
12 11 3anbi2d s = S J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat
13 9 12 anbi12d s = S J Fn s × s J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat
14 2 13 spcev J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat s J Fn s × s J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat
15 fneq1 j = J j Fn s × s J Fn s × s
16 breq1 j = J j cat Hom 𝑓 C J cat Hom 𝑓 C
17 oveq j = J x j x = x J x
18 17 eleq2d j = J Id C x x j x Id C x x J x
19 18 ralbidv j = J x s Id C x x j x x s Id C x x J x
20 19 notbid j = J ¬ x s Id C x x j x ¬ x s Id C x x J x
21 oveq2 j = J C cat j = C cat J
22 21 eleq1d j = J C cat j Cat C cat J Cat
23 16 20 22 3anbi123d j = J j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat
24 15 23 anbi12d j = J j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat J Fn s × s J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat
25 24 exbidv j = J s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat s J Fn s × s J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat
26 1 25 spcev s J Fn s × s J cat Hom 𝑓 C ¬ x s Id C x x J x C cat J Cat j s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
27 14 26 syl J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x C cat J Cat j s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
28 5 6 27 mp2an j s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
29 fveq2 c = C Hom 𝑓 c = Hom 𝑓 C
30 29 breq2d c = C j cat Hom 𝑓 c j cat Hom 𝑓 C
31 fveq2 c = C Id c = Id C
32 31 fveq1d c = C Id c x = Id C x
33 32 eleq1d c = C Id c x x j x Id C x x j x
34 33 ralbidv c = C x s Id c x x j x x s Id C x x j x
35 34 notbid c = C ¬ x s Id c x x j x ¬ x s Id C x x j x
36 oveq1 c = C c cat j = C cat j
37 36 eleq1d c = C c cat j Cat C cat j Cat
38 30 35 37 3anbi123d c = C j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
39 38 anbi2d c = C j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
40 39 2exbidv c = C j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat j s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat
41 40 rspcev C Cat j s j Fn s × s j cat Hom 𝑓 C ¬ x s Id C x x j x C cat j Cat c Cat j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat
42 4 28 41 mp2an c Cat j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat