Metamath Proof Explorer


Theorem cnmpt1k

Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptk1.j φJTopOnX
cnmptk1.k φKTopOnY
cnmptk1.l φLTopOnZ
cnmpt1k.m φMTopOnW
cnmpt1k.a φxXAJCnL
cnmpt1k.b φyYzZBKCnM^koL
cnmpt1k.c z=AB=C
Assertion cnmpt1k φyYxXCKCnM^koJ

Proof

Step Hyp Ref Expression
1 cnmptk1.j φJTopOnX
2 cnmptk1.k φKTopOnY
3 cnmptk1.l φLTopOnZ
4 cnmpt1k.m φMTopOnW
5 cnmpt1k.a φxXAJCnL
6 cnmpt1k.b φyYzZBKCnM^koL
7 cnmpt1k.c z=AB=C
8 cnf2 JTopOnXLTopOnZxXAJCnLxXA:XZ
9 1 3 5 8 syl3anc φxXA:XZ
10 eqid xXA=xXA
11 10 fmpt xXAZxXA:XZ
12 9 11 sylibr φxXAZ
13 12 adantr φyYxXAZ
14 eqidd φyYxXA=xXA
15 eqidd φyYzZB=zZB
16 13 14 15 7 fmptcof φyYzZBxXA=xXC
17 16 mpteq2dva φyYzZBxXA=yYxXC
18 topontop LTopOnZLTop
19 3 18 syl φLTop
20 topontop MTopOnWMTop
21 4 20 syl φMTop
22 eqid M^koL=M^koL
23 22 xkotopon LTopMTopM^koLTopOnLCnM
24 19 21 23 syl2anc φM^koLTopOnLCnM
25 21 5 xkoco1cn φwLCnMwxXAM^koLCnM^koJ
26 coeq1 w=zZBwxXA=zZBxXA
27 2 6 24 25 26 cnmpt11 φyYzZBxXAKCnM^koJ
28 17 27 eqeltrrd φyYxXCKCnM^koJ