Metamath Proof Explorer


Theorem xkoco1cn

Description: If F is a continuous function, then g |-> g o. F is a continuous function on function spaces. (The reason we prove this and xkoco2cn independently of the more general xkococn is because that requires some inconvenient extra assumptions on S .) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses xkoco1cn.t φ T Top
xkoco1cn.f φ F R Cn S
Assertion xkoco1cn φ g S Cn T g F T ^ ko S Cn T ^ ko R

Proof

Step Hyp Ref Expression
1 xkoco1cn.t φ T Top
2 xkoco1cn.f φ F R Cn S
3 cnco F R Cn S g S Cn T g F R Cn T
4 2 3 sylan φ g S Cn T g F R Cn T
5 4 fmpttd φ g S Cn T g F : S Cn T R Cn T
6 eqid R = R
7 eqid y 𝒫 R | R 𝑡 y Comp = y 𝒫 R | R 𝑡 y Comp
8 eqid k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v = k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
9 6 7 8 xkobval ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v = x | k 𝒫 R v T R 𝑡 k Comp x = h R Cn T | h k v
10 9 abeq2i x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v k 𝒫 R v T R 𝑡 k Comp x = h R Cn T | h k v
11 2 ad2antrr φ k 𝒫 R v T R 𝑡 k Comp F R Cn S
12 11 3 sylan φ k 𝒫 R v T R 𝑡 k Comp g S Cn T g F R Cn T
13 imaeq1 h = g F h k = g F k
14 imaco g F k = g F k
15 13 14 eqtrdi h = g F h k = g F k
16 15 sseq1d h = g F h k v g F k v
17 16 elrab3 g F R Cn T g F h R Cn T | h k v g F k v
18 12 17 syl φ k 𝒫 R v T R 𝑡 k Comp g S Cn T g F h R Cn T | h k v g F k v
19 18 rabbidva φ k 𝒫 R v T R 𝑡 k Comp g S Cn T | g F h R Cn T | h k v = g S Cn T | g F k v
20 eqid S = S
21 cntop2 F R Cn S S Top
22 2 21 syl φ S Top
23 22 ad2antrr φ k 𝒫 R v T R 𝑡 k Comp S Top
24 1 ad2antrr φ k 𝒫 R v T R 𝑡 k Comp T Top
25 imassrn F k ran F
26 6 20 cnf F R Cn S F : R S
27 frn F : R S ran F S
28 11 26 27 3syl φ k 𝒫 R v T R 𝑡 k Comp ran F S
29 25 28 sstrid φ k 𝒫 R v T R 𝑡 k Comp F k S
30 imacmp F R Cn S R 𝑡 k Comp S 𝑡 F k Comp
31 11 30 sylancom φ k 𝒫 R v T R 𝑡 k Comp S 𝑡 F k Comp
32 simplrr φ k 𝒫 R v T R 𝑡 k Comp v T
33 20 23 24 29 31 32 xkoopn φ k 𝒫 R v T R 𝑡 k Comp g S Cn T | g F k v T ^ ko S
34 19 33 eqeltrd φ k 𝒫 R v T R 𝑡 k Comp g S Cn T | g F h R Cn T | h k v T ^ ko S
35 imaeq2 x = h R Cn T | h k v g S Cn T g F -1 x = g S Cn T g F -1 h R Cn T | h k v
36 eqid g S Cn T g F = g S Cn T g F
37 36 mptpreima g S Cn T g F -1 h R Cn T | h k v = g S Cn T | g F h R Cn T | h k v
38 35 37 eqtrdi x = h R Cn T | h k v g S Cn T g F -1 x = g S Cn T | g F h R Cn T | h k v
39 38 eleq1d x = h R Cn T | h k v g S Cn T g F -1 x T ^ ko S g S Cn T | g F h R Cn T | h k v T ^ ko S
40 34 39 syl5ibrcom φ k 𝒫 R v T R 𝑡 k Comp x = h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
41 40 expimpd φ k 𝒫 R v T R 𝑡 k Comp x = h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
42 41 rexlimdvva φ k 𝒫 R v T R 𝑡 k Comp x = h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
43 10 42 syl5bi φ x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
44 43 ralrimiv φ x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
45 eqid T ^ ko S = T ^ ko S
46 45 xkotopon S Top T Top T ^ ko S TopOn S Cn T
47 22 1 46 syl2anc φ T ^ ko S TopOn S Cn T
48 ovex R Cn T V
49 48 pwex 𝒫 R Cn T V
50 6 7 8 xkotf k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v : y 𝒫 R | R 𝑡 y Comp × T 𝒫 R Cn T
51 frn k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v : y 𝒫 R | R 𝑡 y Comp × T 𝒫 R Cn T ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v 𝒫 R Cn T
52 50 51 ax-mp ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v 𝒫 R Cn T
53 49 52 ssexi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v V
54 53 a1i φ ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v V
55 cntop1 F R Cn S R Top
56 2 55 syl φ R Top
57 6 7 8 xkoval R Top T Top T ^ ko R = topGen fi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
58 56 1 57 syl2anc φ T ^ ko R = topGen fi ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v
59 eqid T ^ ko R = T ^ ko R
60 59 xkotopon R Top T Top T ^ ko R TopOn R Cn T
61 56 1 60 syl2anc φ T ^ ko R TopOn R Cn T
62 47 54 58 61 subbascn φ g S Cn T g F T ^ ko S Cn T ^ ko R g S Cn T g F : S Cn T R Cn T x ran k y 𝒫 R | R 𝑡 y Comp , v T h R Cn T | h k v g S Cn T g F -1 x T ^ ko S
63 5 44 62 mpbir2and φ g S Cn T g F T ^ ko S Cn T ^ ko R