Step |
Hyp |
Ref |
Expression |
1 |
|
xkoco2cn.r |
|
2 |
|
xkoco2cn.f |
|
3 |
|
simpr |
|
4 |
2
|
adantr |
|
5 |
|
cnco |
|
6 |
3 4 5
|
syl2anc |
|
7 |
6
|
fmpttd |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
8 9 10
|
xkobval |
|
12 |
11
|
abeq2i |
|
13 |
|
simpr |
|
14 |
2
|
ad3antrrr |
|
15 |
13 14 5
|
syl2anc |
|
16 |
|
imaeq1 |
|
17 |
|
imaco |
|
18 |
16 17
|
eqtrdi |
|
19 |
18
|
sseq1d |
|
20 |
19
|
elrab3 |
|
21 |
15 20
|
syl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
22 23
|
cnf |
|
25 |
2 24
|
syl |
|
26 |
25
|
ad3antrrr |
|
27 |
26
|
ffund |
|
28 |
|
imassrn |
|
29 |
8 22
|
cnf |
|
30 |
13 29
|
syl |
|
31 |
30
|
frnd |
|
32 |
28 31
|
sstrid |
|
33 |
26
|
fdmd |
|
34 |
32 33
|
sseqtrrd |
|
35 |
|
funimass3 |
|
36 |
27 34 35
|
syl2anc |
|
37 |
21 36
|
bitrd |
|
38 |
37
|
rabbidva |
|
39 |
1
|
ad2antrr |
|
40 |
|
cntop1 |
|
41 |
2 40
|
syl |
|
42 |
41
|
ad2antrr |
|
43 |
|
simplrl |
|
44 |
43
|
elpwid |
|
45 |
|
simpr |
|
46 |
2
|
ad2antrr |
|
47 |
|
simplrr |
|
48 |
|
cnima |
|
49 |
46 47 48
|
syl2anc |
|
50 |
8 39 42 44 45 49
|
xkoopn |
|
51 |
38 50
|
eqeltrd |
|
52 |
|
imaeq2 |
|
53 |
|
eqid |
|
54 |
53
|
mptpreima |
|
55 |
52 54
|
eqtrdi |
|
56 |
55
|
eleq1d |
|
57 |
51 56
|
syl5ibrcom |
|
58 |
57
|
expimpd |
|
59 |
58
|
rexlimdvva |
|
60 |
12 59
|
syl5bi |
|
61 |
60
|
ralrimiv |
|
62 |
|
eqid |
|
63 |
62
|
xkotopon |
|
64 |
1 41 63
|
syl2anc |
|
65 |
|
ovex |
|
66 |
65
|
pwex |
|
67 |
8 9 10
|
xkotf |
|
68 |
|
frn |
|
69 |
67 68
|
ax-mp |
|
70 |
66 69
|
ssexi |
|
71 |
70
|
a1i |
|
72 |
|
cntop2 |
|
73 |
2 72
|
syl |
|
74 |
8 9 10
|
xkoval |
|
75 |
1 73 74
|
syl2anc |
|
76 |
|
eqid |
|
77 |
76
|
xkotopon |
|
78 |
1 73 77
|
syl2anc |
|
79 |
64 71 75 78
|
subbascn |
|
80 |
7 61 79
|
mpbir2and |
|